Show simple item record

dc.contributor.authorEsnaashari, Shadi
dc.date.accessioned2017-09-18T22:43:45Z
dc.date.available2017-09-18T22:43:45Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/10179/11856
dc.description.abstractMany students with diverse needs are enrolled in university courses. Not all these students are able to be successful in completing their courses. Faculty members are keen to identify these students who have the risk of failing their courses early enough to help them by providing timely feedback so that students can meet the requirements of their courses. There are many studies using educational data mining algorithms which aim to identify at risk students by predicting students’ course outcomes, for example, from their forum activities, content requests, and time spent online. This study addresses this issue by clustering the students’ course outcomes using students’ class participation data which can be obtained from various online education technological solutions. Using data mining in educational systems as an analytical tool offers researchers new opportunities to trace students’ digital footprints in various course related activities and analyse students’ traced data to help the students in their learning processes and teachers in their educational practices. In this study the focus is not only on finding at risk students but also in using data for improving learning process and supporting personalized learning. In‐class participation data was collected through audience participation tools, the out‐of‐class participation data was collected from Stream and combined with the qualitative and quantitative data from questionnaires. The participation data were collected from 5 different courses in the mainstream university programs. Our first aim was to understand the perception of students regarding the effect of participation and using the audience participation tools in class and their effects on students’ learning processes. Moreover, we would like to identify to what extents their perceptions match with their final course outcomes. Therefore, the tool has been used in different mainstream courses from different departments. The results of our study show that students who participated more and thought that the tool helped them to learn, engaged and increased their interest in the course more, and eventually achieved highest scores. This finding supports the view that inclass participation is critical to learning and academic success.en_US
dc.language.isoenen_US
dc.publisherMassey Universityen_US
dc.rightsThe Authoren_US
dc.subjectData miningen_US
dc.subjectCollege dropoutsen_US
dc.subjectEducational statisticsen_US
dc.subjectData processingen_US
dc.subjectAcademic achievementen_US
dc.subjectResearch Subject Categories::TECHNOLOGY::Information technologyen_US
dc.titleUsing students' participation data to understand their impact on students' course outcomes : a thesis presented in partial fulfilment of the requirements for the MPhil degree at Massey University, Albany, New Zealand, Master of Philosophy degree in Information Technologyen_US
dc.typeThesisen_US
thesis.degree.disciplineInformation Technologyen_US
thesis.degree.grantorMassey Universityen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Philosophy (MPhil)en_US


Files in this item

Icon
Icon

This item appears in the following Collection(s)

Show simple item record