Show simple item record

dc.contributor.authorLynch, Ten_US
dc.contributor.authorVan Brunt, Ben_US
dc.contributor.authorZaidi, AAen_US
dc.date.available2018-09-01en_US
dc.date.issued2018-09-01en_US
dc.identifier.citationESAIM: PROCEEDINGS AND SURVEYS, 2018, 62 pp. 158 - 167en_US
dc.description.abstractSimple models for size structured cell populations undergoing growth and division producea class of functional ordinary differential equations, called pantograph equations, that describe the longtime asymptotics of the cell number density. Pantograph equations arise in a number of applicationsoutside this model and, as a result, have been studied heavily over the last five decades. In this paper we review and survey the role of the pantograph equation in the context of cell division. In addition, fora simple case we present a method of solution based on the Mellin transform and establish uniqueness directly from the transform equation.en_US
dc.format.extent158 - 167en_US
dc.relation.urihttps://www.esaim-proc.org/articles/proc/abs/2018/02/proc_esaim2018_158/proc_esaim2018_158.htmlen_US
dc.titleCELL DIVISION AND THE PANTOGRAPH EQUATIONen_US
dc.typeConference Paper
dc.citation.volume62en_US
dc.identifier.doi10.1051/proc/201862158en_US
dc.description.confidentialfalseen_US
dc.identifier.elements-id424631
dc.relation.isPartOfESAIM: PROCEEDINGS AND SURVEYSen_US
pubs.organisational-group/Massey University
pubs.organisational-group/Massey University/College of Sciences
pubs.organisational-group/Massey University/College of Sciences/Institute of Fundamental Sciences
dc.identifier.harvestedMassey_Dark
pubs.notesNot knownen_US


Files in this item

FilesSizeFormatView

This item appears in the following Collection(s)

Show simple item record