• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characterising a biologically relevant protein-G4 interaction : HP1α and TERRA : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Genetics at Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    RoachMScThesis.pdf (8.588Mb)
    Export to EndNote
    Abstract
    Our genetic material is intricately folded and protected through the formation of a compact nucleoprotein complex, termed heterochromatin. In addition to controlling the expression of genes, heterochromatin formation is important for the structural integrity of our genome, specifically for the centromeres, the central attachment point of our chromosomes, and also the telomeres, the ends of our chromosomes. The way in which the heterochromatin in these areas is formed and maintained is though the recruitment and binding of the pivotal chromatin regulator, Heterochromatin Protein 1α (HP1α). The current model that explains how and why HP1α is recruited to, and maintained at, regions of constitutive heterochromatin is simple: HP1α binds post-translational modifications on histones (eg. H3K9me3). However, this binding is not high affinity, therefore may not be the sole determinant in HP1α localisation. At the centromeres, it has been shown that a long non-coding RNA transcribed from the peri-centromeres is responsible for recruiting HP1α to this crucial region. At the telomeres, it is proposed that the long non-coding RNA transcribed from the telomeric DNA is responsible for this same purpose. Because of its guanine-rich sequence, it is able to form a non-canonical nucleic acid structure, the G-quadruplex, which may provide the specificity for heterochromatin formation at telomeres. This TElomeric Repeat-containing RNA (TERRA) has been implicated in telomeric elongation pathways, relating it to the immortalisation of cancer cells. It was found that HP1α can specifically recognise the parallel topology of TERRA, binding with high affinity through HP1α’s unstructured hinge. HP1α was also shown to bind other G-quadruplexes of parallel topology, specifically DNA present in promoter and regulatory regions of many proto-oncogenes, implicating HP1α in potential G-quadruplex-dependent gene expression regulatory mechanisms. The interaction shown here between HP1α and TERRA shows a novel mechanism of telomeric heterochromatin formation, providing crucial insights into telomere maintenance and health in human cells, and furthering our understanding of the role of G-quadruplexes in the epigenome.
    Date
    2019
    Author
    Roach, Ruby Jean
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/15492
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1