• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evolution of the spherical cell shape in bacteria : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Genetics at Massey University, Albany, New Zealand

    Icon
    View/Open Full Text
    YuloPhDThesis.pdf (8.810Mb)
    Export to EndNote
    Abstract
    Cell shape is an important feature of bacterial cells. It is involved in critical aspects of bacterial cell biology such as motility, growth, and the evasion of predators. Despite this, how cell shape has evolved in bacteria is unclear. For most rod-shaped bacteria, the maintenance of cell shape depends primarily on the bacterial actin-like protein, MreB. In this study, we show that the deletion of MreB from the rod-shaped model organism Pseudomonas fluorescens SBW25 results in the formation of aberrant spherical cells that have increased size and reduced fitness. This new MreB-null strain (ΔmreB) is susceptible to mechanical damage and grows poorly due to cell division defects. Furthermore, synthesized peptidoglycan (PG) chains were shorter and cell wall assembly was disorganised in this strain. A 1,000-generation evolution experiment comprised of multiple independent lineages produced spherical cells that have a reduced cell size and improved fitness. Mutations in the PG synthesis protein PBP1a were found across multiple lineages. Genetic reconstructions demonstrated that these mutations have a loss-of-function effect that reduced PG cross-linking and restored the ordered assembly of the cell wall, thereby reducing cell size and improving fitness in MreB-null cells. In one lineage, a five-gene deletion that included the gene coding for the outer membrane channel OprD was found to be beneficial. This deletion reduced cell size, improved fitness, and restored orderly cell wall construction. The mechanism responsible for this is unknown, but it may be related to modifications in septum localisation via the Min system. Finally, we show using phylogenetic analysis that PBP loss is a general trend in bacteria that evolved to become spherical, hinting at a plausible strategy for the evolution of the spherical cell shape from rod-shaped progenitors.
    Date
    2019
    Author
    Yulo, Paul Richard Jesena
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/15503
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1