Show simple item record

dc.contributor.authorDerfel, G
dc.contributor.authorVan Brunt, B
dc.contributor.authorWake, Graeme C.
dc.date.accessioned2012-06-12T04:36:41Z
dc.date.accessioned2016-03-06T22:26:45Z
dc.date.accessioned2016-09-07T13:58:09Z
dc.date.available2012-06-12T04:36:41Z
dc.date.available2016-03-06T22:26:45Z
dc.date.available2016-09-07T13:58:09Z
dc.date.issued2012
dc.identifier.citationDerfel, G., Van Brunt, B. & Wake G. (2012). A cell growth model revisited. Functional Differential Equations 19 (1/2) 71-81en
dc.identifier.issn0793-1786
dc.identifier.urihttp://hdl.handle.net/10179/9757
dc.description.abstractIn this paper a stochastic model for the simultaneous growth and division of a cell-population cohort structured by size is formulated. This probabilistic approach gives straightforward proof of the existence of the steady-size distribution and a simple derivation of the functional-differential equation for it. The latter one is the celebrated pantograph equation (of advanced type). This firmly establishes the existence of the steady-size distribution and gives a form for it in terms of a sequence of probability distribution functions. Also it shows that the pantograph equation is a key equation for other situations where there is a distinct stochastic framework.en
dc.language.isoenen
dc.publisherResearch Institute, College of Judea and Samaria,en
dc.subjectSteady-size distributionen
dc.subjectAsymptotic behaviouren
dc.subjectPoisson processen
dc.subjectPantograph equationen
dc.titleA cell growth model revisiteden
dc.typeArticleen
dc.identifier.harvestedMassey_Dark
dc.identifier.harvestedMassey_Dark


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record