Welcome to Massey Research Online


Massey Research Online is an open access digital archive of the research and scholarship of Massey University and is jointly managed by the University Library and Information Technology Services.

Massey Research Online contains research theses and research outputs including published work by Massey University students and academic staff as well as peer-reviewed material not published elsewhere. In the case of previously published research outputs all requirements of copyright owners are observed.

Items in Massey Research Online are fully indexed and searchable on Google Scholar and NZ Research.

To submit research outputs to Massey Research Online, check out the Depositing content to MRO page. For all other queries, email the Library.

 

Communities in DSpace

Select a community to browse its collections.

Recent Submissions

Item
Probing structural modification of milk proteins in the presence of pepsin and/or acid using small- and ultra-small-angle neutron scattering
(Elsevier Ltd, 2025-02) Yang M; Ye A; Yang Z; Everett DW; de Campo L; Singh H; Gilbert EP
Acid- and pepsin-induced milk protein coagulation plays a crucial role in the gastric digestion of milk. Real-time structural evolution at a nano- (e.g. colloidal calcium phosphate (CCP) and micelle) and micro- (gel network) level of unheated and heated (85 °C for 30 min) bovine milk was examined under acidic conditions and at low and high concentrations of pepsin using ultra-small- and small-angle neutron scattering (USANS and SANS), small-amplitude oscillatory rheometry and confocal scanning laser microscopy. Milk was treated with glucono-δ-lactone (GDL), pepsin or a combination of GDL and pepsin to induce coagulation. Heat-treated milk showed a faster increase in elastic storage modulus (G′) and scattering intensity (USANS and SANS) compared with unheated milk when coagulated with GDL or the combination of GDL and pepsin. At pH 6.3, heat treatment retarded pepsin (1.10 U/mL)-induced milk coagulation, with slower increases in G′ and scattering intensity. At a high concentration of pepsin (2000 U/mL) that mimics the concentration found in the stomach, general proteolysis followed coagulation. Heat treatment retarded coagulation but accelerated curd proteolysis. This study demonstrates how time-resolved USANS and SANS can be used to investigate the structural evolution of protein coagulation and degradation under gastric environment conditions at nano- and micro-metre length scales.
Item
Glycan Utilisation and Function in the Microbiome of Weaning Infants
(MDPI (Basel, Switzerland), 2019-07-04) McKeen S; Young W; Fraser K; Roy NC; McNabb WC
Glycans are present exogenously in the diet, expressed and secreted endogenously by host cells, and produced by microbes. All of these processes result in them being available to the gut microbiome, firmly placing glycans at the interface of diet-microbe-host interactions. The most dramatic shift in dietary sources of glycans occurs during the transition from the milk-based neonatal diet to the diverse omnivorous adult diet, and this has profound effects on the composition of the gut microbiome, gene expression by microbes and host cells, mucin composition, and immune development from innate towards adaptive responses. Understanding the glycan-mediated interactions occurring during this transitional window may inform dietary recommendations to support gut and immune development during a vulnerable age. This review aims to summarise the current state of knowledge on dietary glycan mediated changes that may occur in the infant gut microbiome and immune system during weaning.
Item
Gut Microbial Metabolites and Biochemical Pathways Involved in Irritable Bowel Syndrome: Effects of Diet and Nutrition on the Microbiome
(Elsevier Inc on behalf of the American Society for Nutrition, 2020-05) James SC; Fraser K; Young W; McNabb WC; Roy NC
The food we consume and its interactions with the host and their gut microbiota affect normal gut function and health. Functional gut disorders (FGDs), including irritable bowel syndrome (IBS), can result from negative effects of these interactions, leading to a reduced quality of life. Certain foods exacerbate or reduce the severity and prevalence of FGD symptoms. IBS can be used as a model of perturbation from normal gut function with which to study the impact of foods and diets on the severity and symptoms of FGDs and understand how critical processes and biochemical mechanisms contribute to this impact. Analyzing the complex interactions between food, host, and microbial metabolites gives insights into the pathways and processes occurring in the gut which contribute to FGDs. The following review is a critical discussion of the literature regarding metabolic pathways and dietary interventions relevant to FGDs. Many metabolites, for example bile acids, SCFAs, vitamins, amino acids, and neurotransmitters, can be altered by dietary intake, and could be valuable for identifying perturbations in metabolic pathways that distinguish a "normal, healthy" gut from a "dysfunctional, unhealthy" gut. Dietary interventions for reducing symptoms of FGDs are becoming more prevalent, but studies investigating the underlying mechanisms linked to host, microbiome, and metabolite interactions are less common. Therefore, we aim to evaluate the recent literature to assist with further progression of research in this field.
Item
Effects of Defatted Rice Bran-Fortified Bread on the Gut Microbiota Composition of Healthy Adults With Low Dietary Fiber Intake: Protocol for a Crossover Randomized Controlled Trial
(JMIR Publications, 2024-08-29) Ng HM; Maggo J; Wall CL; Bayer SB; McNabb WC; Mullaney JA; Foster M; Cabrera DL; Fraser K; Cooney J; Trower T; Günther CS; Frampton C; Gearry RB; Roy NC
BACKGROUND: Inadequate dietary fiber (DF) intake is associated with several human diseases. Bread is commonly consumed, and its DF content can be increased by incorporating defatted rice bran (DRB). OBJECTIVE: This first human study on DRB-fortified bread primarily aims to assess the effect of DRB-fortified bread on the relative abundance of a composite of key microbial genera and species in fecal samples. Secondary outcomes include clinical (cardiovascular risk profile), patient-reported (daily bread consumption and bowel movement, gut comfort, general well-being, and total DF intake), biological (fecal microbiota gene abundances, and fecal and plasma metabolites), and physiome (whole-gut and regional transit time and gas fermentation profiles) outcomes in healthy adults with low DF intake. METHODS: This is a 2-armed, placebo-controlled, double-blinded, crossover randomized controlled trial. The study duration is 14 weeks: 2 weeks of lead-in, 4 weeks of intervention per phase, 2 weeks of washout, and 2 weeks of follow-up. Overall, 60 healthy adults with low DF intake (<18 g [female individuals] or <22 g [male individuals] per day) were recruited in Christchurch, New Zealand, between June and December 2022. Randomly assigned participants consumed 3 (female individuals) or 4 (male individuals) slices of DRB-fortified bread per day and then placebo bread, and vice versa. The DRB-fortified bread provided 8 g (female individuals) or 10.6 g (male individuals) of total DF, whereas the placebo (a matched commercial white toast bread) provided 2.7 g (female individuals) or 3.6 g (male individuals) of total DF. Before and after each intervention phase, participants provided fecal and blood samples to assess biological responses; completed a 3-day food diary to assess usual intakes and web-based questionnaires to assess gut comfort, general and mental well-being, daily bread intake, and bowel movement via an app; underwent anthropometry and blood pressure measurements; and drank blue food dye to assess whole-gut transit time. Additionally, 25% (15/60) of the participants ingested Atmo gas-sensing capsules to assess colonic gas fermentation profile and whole-gut and regional transit time. Mean differences from baseline will be compared between the DRB and placebo groups, as well as within groups (after the intervention vs baseline). For metabolome analyses, comparisons will be made within and between groups using postintervention values. RESULTS: Preliminary analysis included 56 participants (n=33, 59% female; n=23, 41% male). Due to the large dataset, data analysis was planned to be fully completed by the last quarter of 2024, with full results expected to be published in peer-reviewed journals by the end of 2024. CONCLUSIONS: This first human study offers insights into the prospect of consuming DRB-fortified bread to effectively modulate health-promoting gut microbes, their metabolism, and DF intake in healthy adults with low DF intake. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12622000884707; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=383814. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/59227.
Item
Amino acid requirements of the infant: the amino acid composition of human breast milk
(Frontiers Media S.A., 2024-09-17) Moughan PJ; Deglaire A; Yan Y; Wescombe P; Lim WXJ; Stroebinger N; Duan S; Szeto IM-Y; Hodgkinson S; Freitas HR
The recommended amino acid requirements of the infant are based on the amino acid composition of mature human breast milk. The amino acid composition of breast milk is usually determined following either acid or alkaline (for tryptophan) hydrolysis. For accuracy, however, the known effect of hydrolysis time on amino acid composition should be accounted for. Also, ideally the amino acid composition of breast milk should be given in units of digested (assumed to be absorbed) amino acids. A review of the literature is presented which gives mean total amino acid concentrations in mature human milk (n = 26 studies), mean hydrolysis correction factors (n = 3 studies) and mean true ileal amino acid digestibility coefficients (n = 3 studies, suckling piglet). There were differences between the estimates of amino acid concentration corrected for hydrolysis time and digestibility, and current FAO (2013) recommendations that were not corrected for these factors. The values based on the published literature up until 2023 (mg/g true protein) corrected for hydrolysis time and digestibility gave higher values (more than 16% higher) for leucine, lysine and threonine, and considerably higher values (greater than 30%) for histidine and tryptophan. Current recommendations may need revision.