
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

ComputationalMethods for A
Generalised Acoustics Analysis

Workflow

A Thesis Presented In Partial Fulfilment
of The Requirements for The Degree

ofMaster of Science in Computer Science

by
Yukio Fukuzawa

Supervisors:
Dr. Matthew Pawley

Prof. StephenMarsland
Dr. Andrew Gilman

School of Natural and Computational Sciences
Massey University
Albany, New Zealand

February 2022

CONTENTS

1 Overview 3

1.1 Introduction . 3

1.2 Challenges . 5

1.2.1 A precise way to segment syllables using both visualisation and sound

playback . 6

1.2.2 Syllables needs to be labelled in a flexible way, at different scales 7

1.2.3 A method for collaborative work between experts in regards to syllable

classification . 8

1.2.4 A user-friendly software that allows users to easily extend feature ex-

traction capability . 8

1.3 Contribution . 9

1.4 Why Koewas written . 9

1.5 Outline of the thesis . 11

2 Design and functionality ofKoe 12

2.1 Introduction . 12

2.2 Languages, framework and libraries . 12

2.2.1 Koe as a webapp . 13

2.2.2 Data is stored in the backend and can be exported to the end user . . . 14

2.2.3 Koe’s backend is implemented in Python to maximise extendability . . 15

2.2.4 Libraries . 15

i

2.3 Database design . 16

2.3.1 Koe’s database is designed to be user centred 17

2.4 Front-end design and framework . 20

2.4.1 Koeworkflow . 20

2.4.2 Front-end design . 20

2.4.3 Components of a page . 22

2.4.4 Extendability . 22

2.5 Functionalities of Koe . 25

2.5.1 Upload and segment recordings . 25

2.5.2 Extract acoustic features from units 25

2.5.3 Classify units . 26

2.5.3.1 Interactive ordination plots 26

2.5.3.2 Unit tables . 27

2.5.3.3 Class exemplars . 28

2.5.3.4 Classification granularity 28

2.5.3.5 Validate classification through independent labelling 28

2.5.4 Analyse sequence structure . 28

2.5.4.1 Filter songs by subsequence 29

2.5.4.2 Discoverandvisualise vocal patternsusingsequence rulemin-

ing . 29

2.5.5 Conclusions . 30

3 Background 31

3.1 Basic concepts of Digital Signal Processing (DSP) 31

3.1.1 Sounds are signals recorded as a function of time, but best represented

as a function of time-frequency . 31

3.1.2 Analyse sounds in time-frequency 32

3.1.2.1 Naive Fourier Transform: the maths 32

3.1.2.2 Fast Fourier Transform: the practical implementation 33

3.1.2.3 Short-Time Fourier Transform: the usage 33

3.2 Sound production and perception in birds versus in humans 34

ii

3.2.1 Birds can produce two sounds at once, within a wide range of frequency 34

3.2.2 Bird vocalisations are acoustic signals structured in time and frequency 36

3.2.3 Birds perceive sounds differently from human 37

3.3 Computational models based on sound production and perception 38

3.3.1 Model of sound production: the source-filter model 38

3.3.2 Model of frequency perception: non-linear filter-bank 39

3.3.3 Model of loudness perception: Equal loudness contour 41

3.4 Conclusions . 42

4 Syllable segmentation 43

4.1 Introduction . 43

4.2 Manual segmentation in Koe . 44

4.3 Related work for automatic segmentation in birdsongs 45

4.4 Procedural algorithms . 48

4.4.1 Endpoint detection in time using energy threshold: Harmamethod . . 48

4.4.2 Boundarydetection in timeand frequencyusing imageprocessing: Lasseck

method . 50

4.5 Heuristic approaches . 53

4.5.1 Feed-forward Neural Network with fixed size input 54

4.5.2 Recurrent Neural Network with variable size input 54

4.6 Data and evaluation . 56

4.6.1 Data . 56

4.6.2 Evaluation . 56

4.6.3 Results . 58

4.7 Conclusion . 58

5 Feature representation 63

5.1 Introduction . 63

5.2 Acoustic features . 64

5.2.1 Descriptive features . 65

5.2.1.1 Time domain features . 65

iii

5.2.1.2 Frequency domain perceptual features 66

5.2.1.3 Use of descriptive features in related work 68

5.2.2 Abstract features . 68

5.2.2.1 Frequency domain physical features 68

5.2.2.2 Cepstral domain features 69

5.2.2.3 Use of abstract features in related work 70

5.3 Feature length standardisation . 71

5.3.1 Aggregative methods . 73

5.3.1.1 Summary methods . 74

5.3.1.2 Resampling methods . 74

5.3.2 Model-based methods . 75

5.4 Implementation in Koe . 77

5.4.1 User interface . 77

5.4.2 Koe’s task queue . 79

5.4.3 Implementation and expandability 79

5.4.4 Storage . 81

5.4.4.1 Physical storage . 82

5.4.4.2 Store and retrieve data 83

5.5 Conclusion . 84

6 Visualisation and classification 86

6.1 Introduction . 86

6.2 Cluster analysis . 87

6.2.1 Hierarchical clustering . 87

6.2.2 Semi-automatic clustering . 89

6.2.3 Dimensionality reduction . 90

6.3 User interface . 90

6.3.1 Submit jobs to construct ordination and calculate similarity index . . . 90

6.3.2 Using similarity index to sort syllables in the unit table 91

6.3.3 Using ordination for bulk labelling in an interactive cluster visualisation 92

6.4 Implementation in Koe . 94

iv

6.4.1 Construct ordination . 94

6.4.2 Calculate similarity index . 95

6.4.3 Collaborative labelling . 96

6.5 Case study: Validating classification with independent labelling 97

6.6 Conclusions . 98

7 Sequence analysis 99

7.1 Introduction . 99

7.2 Syntax discovery via sequence structure . 100

7.2.1 Manual examination of subsequence via filtering 101

7.2.2 Automated subsequence discovery using N-gram 102

7.2.3 Automated subsequence discovery using SPADE 103

7.2.4 Analysis via visualisation with network models 105

7.3 Implementation . 106

7.3.1 SPADE . 106

7.3.2 Networks . 107

7.4 Case studies: Evaluating song structure in NZ bellbirds 108

7.4.1 Using SPADE parameters . 109

7.4.2 Using networks . 110

7.5 Conclusion . 110

8 Conclusions 112

8.1 Key contributions . 112

8.2 Future work . 113

8.3 Data availability . 113

Bibliography 114

v

LIST OF FIGURES

2.1 ER Diagram of the database structure generated by Django from the declared

models . 17

2.2 A simplified ER Diagram of Koe’s database structure. 18

2.3 Koe’s acoustics workflow and its accessibility from the main app 21

2.4 Organisation of a page in Koe. 22

2.5 Other components of Koe’s main section . 23

2.6 Koe ’s interactive Ordination view . 26

2.7 Unit table view in Koe . 27

2.8 Koe ’s songs list view . 29

3.1 Waveform of a typical birdsong . 32

3.2 �e bird’s syrinx and some complex sounds it creates 35

3.3 Multiple level structure of a birdsong revealed by a spectrogram 37

3.4 �e source-filter model . 39

3.5 Mel and Bark filter banks . 40

3.6 Equal-loudness-contours . 41

4.1 Koe ’s syllable segmentation and adjustments 45

4.2 Spectrogram and the spectral peak value curveHarmamethod uses to find syl-

lables . 50

4.3 Processes of Lasseck’s segmentation method 52

4.4 Syllable end-point detection with MLP using fixed size input 60

vi

4.5 Syllable end-point detection with RNN using variable size input 61

4.6 Mean and two standard deviations of specific scores of different segmentation

algorithms . 62

5.1 Workflow . 64

5.2 Descriptive acoustics features . 65

5.3 Descriptive acoustics features . 69

5.4 Summary methods . 74

5.5 Resampling methods . 75

5.6 Audio auto-encoder . 76

5.10 Directory structure of feature values stored on the hard drive. 83

6.1 Illustration of hierarchical clustering using UPGMA 89

6.2 Control panels accessible under submenu Extract features and compare to create

an ordination for clustering or similarity index for sorting. 91

6.3 Left side control panel of the unit table. 91

6.4 Koe’s unit table after filtered and sorted by similarity index. 92

6.5 Koe ’s Interactive Ordination view . 93

6.6 Accessing labelled data from other teammembers 97

7.1 Koe ’s songs list view . 101

7.2 Table of subsequences and their SPADE parameters in Mine sequence structure

page. 105

7.3 An example of a graph for a subset of syllables in Koe. 106

7.4 Control panel inMine sequence structure page to change graph parameters. . . . 108

7.5 Network visualisations of male and female song sequence structure. 111

vii

ACKNOWLEDGEMENTS

�is thesis is the result of a collective effort by somany people to salvagemy failed PhD attempt

after six years of struggles. However, I will always remember these six years fondly. I havemet

wonderful people, developed lasting friendships, and even found my missing half at this very

institute! For all the people that are involved in this journey of mine, I would like you to know

that I’mgrateful for your supports during these years. Iwalked out of the processwith amaster

thesis, a brandnewacoustics tool undermybelly, andawife! If that’s not a success, I don’t know

what is!

With that out of the way, I would like to thank all those who have joined me on this journey

andmade this outcome possible.

First I would like to thank Dr. Andrew Gilman, my main supervisor during the PhD period,

who sparked my interest in academia and helped me get into PhD in the first place. You are a

knowledgeable dude, a good friend, and a guy with an interesting sense of humour.

I want to thank Prof. Dianne Brunton for being unbelievably supportive during my entire

time at Massey, despite not officially beingmy supervisor. Above all things, you are passionate

about students and with you we always find someone we can trust and confide in. We are so

lucky to have you to lead the institute.

I want to thank Dr. Mat Pawley, my main supervisor during the last two years. You are a

great source of encouragement and a down-to-earth supervisor. A big part of Koe, sequence

mining using SPADE, was your suggestion, and I wouldn’t have made that without your en-

couragement.

I want to thank Prof. Stephen Marsland, my co-supervisor during this entire time. I truly

1

admire your deep knowledge of machine learning and hope that one day I can talk to people

about it with complete confidence the way you explained things to me.

I want to thankWesleyWebb, my dear friend and co-author of Koe. Koewould not have been

where it is nowwithout your contribution. You’re such a great dude, always humble and joyful,

and a great listener. Plus serious presentation and Photoshop skills.

I want to thank Niloofar Aflaki, my wife, for your love and support which made it possible

for me to complete this thesis. During my third and fourth year doing PhD, seeing you every

now and then in the kitchen or at Zumba class made those gloomy days more bearable.

I want to thankmy parents who helped bringme to New Zealand in the first place, and have

been supportive of all the decisions I made. �ey were supportive when I quit a job to start a

PhD, and were supportive when I quit a PhD to start a new job. �ey couldn’t care less whether

I have a PhD or not, as long as I’m happy - which is pretty rare for Asian parents. I’m grateful

to be their son.

�ere are still many people I wish to thank, albeit not directly involvedwithmy study, they in

more than a handful of ways, havemademy PhD life a little more enjoyable. So thank you Tim,

Judy, Elijah and Claire; Jun and Shona, Azadeh, Hong and Peter; Tony; as well as all the admin

staff at INMS.

2

CHAPTER 1

OVERVIEW

1.1 Introduction

Acoustic communication plays important roles in the lives ofmany animal species, functioning

in mate attraction, species recognition and resource defence (Marler and H. W. Slabbekoorn

2004, Ch.6). Unlike visual signals which need a direct line of sight, sound can propagate over

long distances and where visibility is poor, e.g. dense vegetation (Howard 1999). Most vocalis-

ing taxa have been the subjects of bioacoustics research to some extent but none has beenmore

extensively investigated than songbirds. �e vocal activities of songbirds are amongst themost

proliferate in the animal kingdom.�ediversity of songbirdmorphology leads to a broad range

of acoustic capability from subsonic to supersonic, from simple chirping to complex vocal pat-

terns that bear many parallels to human speech (Sainburg et al. 2019). One crucial similarity

between human speech and birdsong is that they are both combinatorial signals (Eimas et al.

1971; Zuidema and de Boer 2009) - meaning that the vocalisation patterns can be subdivided

into smaller units. Evidence of combinatorial processing is found in species of other taxa such

as Campbell’s monkey (Ouattara et al. 2009), parrots (Dahlin and Wright 2012), rock hyraxes

(Kershenbaum, Ilany, et al. 2012) however these are exceptions rather than the norm, whereas

in songbird this process is ubiquitous (Kershenbaum,Déaux, et al. 2018). Combinatorial signal

processing is the key to enable the reuse or adaptation of algorithms/tools developed for speech

processing for birdsong, which makes this thesis possible.

In recent years, speech processing has become one of themost researched topics inmachine

3

learning. We already enjoy the results of these research through the introduction and contin-

uous improvement of digital assistance such as Siri and Cortana. Some aspects of speech pro-

cessing can even be considered solved, for example, automatic speech recognition (ASR) and

machine translation (Hirschberg and Manning 2015). �is success in speech processing has

inspired computer scientists to turn their attention to animal vocalisations. Studies of bird vo-

calisation have broad implications for other fields of biology and can even change or deepen the

way we understand our own species, as they can potentially answer questions about the evolu-

tion of language, the process of language learning in children, etc. From a computer scientist’s

point of view, mymain aim is to investigate how computer algorithms can be used to facilitate

various kind of research of birdsong.

A large proportion of reported research in birdsong is concentrated on the identification of

bird species from their songs or calls. Competitions for species recognition from songs have

been held such as NIPS4B 2013, ICML4B 2013, MLSP (annual) and BirdCLEF (annual). Smart-

phone apps such asWARBLR (Warblr 2020) have been developed for identifying the vocalising

species from a live recording taken by user. A less well researched topic is the analysis of songs

from the same species, such as mimicry of brood parasites (Ranjard, M. G. Anderson, et al.

2010), song crystallisation of juvenile birds (Derégnaucourt et al. 2005; O. Tchernichovski et al.

2004; Wellock and Reeke 2012), impacts of environmental noise or vegetation density on song

characteristics (Brumm andH. Slabbekoorn 2005; Francisco et al. 2002), dialects between dif-

ferent populations (Luis F. Baptista and King 1980; Rothstein and Fleischer 2007;Williams and

P. J B Slater 1990), and differences between the vocalisation of male and female (Webb et al.

2021). �ese are different case studies of the same broad analysis which looks to find subtle

differences between one set of vocalisation and the other. In this thesis, I refer to this analy-

sis as dialect analysis, although the terms "dialect" in human speech is usually used in a much

narrower scope.

�e analysis of dialects in birdsong is also different from the analysis of human speech. In

humans, dialects are usually pre-defined (Nerbonne and Heeringa 2001); studies are carried

out to analyse the differences after the fact. For birds, it is hard to tell whether the differences

we perceive with our human ears are also significant to the bird. �e reverse is also true: birds

generally havemuchhigher temporal acoustic resolution; two sets of vocalisationmight be dis-

4

tinguishable to the birds, but do not sound dissimilar to us at until they are played back in slow

speed. Without an established method to determine whether dialects exist or how to quan-

tify them, it is no surprise that dialect analysis still requires heavily manual operations and

decision-making from experts. My thesis therefore aims at investigating and developing com-

puter algorithms that can be used by biologists to speed up their analysis.

�ese algorithms broadly include: syllable segmentation, syllable classification, clustering ,

visualisation, and sequence analysis, which arenow implemented inKoe, aweb-based software

that Ideveloped in collaborationwithabiologist atmy institution,Dr. WesleyWebb. �is thesis

is centred around the science and practicality of Koe for bioacoustics research.

1.2 Challenges

In contrast with human speech, we don’t have a priori knowledge of bird’s perception of units,

including temporal boundary (where a unit starts and ends) and how much a unit can vary

before it is perceived as a distinct class (Lachlana and Nowickia 2015). �is leads to two major

challenges: how to determine the vocalisation unit of a species (segmentation), and how to

determine whether two units are different enough to be considered distinct (classification).

�ese are the core issues computer scientists face when designing algorithms for bioacoustics

research.

Birdsong is thought to be hierarchical in structure, divisible into different levels of complex-

ity (Berwick et al. 2011). �e common approach is to divide a song into the smallest vocal units

based on the durations of the sounds and the silent gaps between them. �ese units can have

various names depending on the species, but the most common terminology is "syllable".

�e concept of a "syllable" is discussed in depth in Section §3.2.2. For now, a syllable can be

understood as a continuous sound signal separated from the other units by a silent gap. Having

a satisfactory set of syllablesprecisely segmentedandconsistently labelled is a crucial stepprior

to any analysis that can be then carried out. However, the accuracy requirements differ from

analysis to analysis. For studies that do not look deeply at the syllable label, a crude input is

good enough as long as they contain enough information to differentiate the totality of these

syllables as a whole, and therefore a faster albeit less accurate algorithm for segmentation and

classification might satisfy. For example, species identification doesn’t even need the syllables

5

to be labelled, as long as the input can be transformed into a numeric representation that helps

distinguish one species fromanother. For dialect analysis, accuracy trumps speed, especially if

the rawdata is limited; the accuracy cost to implement anautomatic algorithmoftenoutweighs

potential time-saving benefits.

�efield of acoustics software is very fragmented. Software that provides solutions for accu-

ratemanual processes exists, however they are often specialised in only one part. Raven (Bioa-

coustics Research Program 2011) is good at partitioning long recordings into individual songs.

Luscinia (R F Lachlan 2007) is good at segmenting syllables. Excel is so far still a widely used

tool for syllable classification. Software such as Sound Analysis Pro (Ofer Tchernichovski et al.

2000) and Avisoft (Specht 2002) (both proprietary) provide a convenient interface to extract

acoustics measurements from syllables, but they are locked in a small set of features and the

users have no way to introduce other features. None of these software provides sequence anal-

ysis, the researchers often have to create bespoke code themselves to get this done. In order for

a biologist to conduct a typical dialect analysis, they have to transfer their data between three,

four different software plus their own coding. An end-to-end software solution that can piece

together all these fragments is still lacking. In Section §1.2.1, I detail what such software needs

to fulfill.

1.2.1 A precise way to segment syllables using both visualisation and sound

playback

How much gap is required to separate syllables is up to the intuition of the researcher based

on their experience. �ere’s currently no way to tell whether this gap length is correct from the

bird’s perspective. Some speciesmight be able to discern a smaller gap, somemight only recog-

nise a longer gap. Even if the gap length could be correctly identified, automated gap detection

in birdsong recordings from the field could still be difficult due to unwanted noise masking

the silent gaps. Often for in-depth analysis of birdsongs, precision is far more important than

speed, thus the common approach is still to carry out segmentation manually.

Manual segmentation is usually performed not only by listening to the sound, but also by

looking at the spectrogram - a visualisation of the sound in time and frequency. A syllable is

presented as a blob of pixels representing high energy signal on a plain background. �e start

6

and end points of this pixel blob is the start and end of the syllable in time. Depending on

how the spectrogram is generated, each pixel can represent longer or shorter period of time.

Using both the spectrogramandplayback, the biologist can speed up the segmentation process

significantly, especially if the spectrogram can be fine-tuned and the playback speed can be

adjusted.

1.2.2 Syllables needs to be labelled in a flexible way, at different scales

How much a syllable can change before it is considered a different type is an unsolved prob-

lem. In human speech, virtually every person has their own slightly differentway to pronounce

the same word. However our vocabulary is constructed as discrete categories. It is well under-

stood that categorical perception is also ubiquitous in the animal kingdom (Baugh et al. 2008;

Ehret and Haack 1981; May et al. 1989; Wyttenbach et al. 1996) and especially in birds (Lachlana

andNowickia 2015; Nelson and PeterMarler 1989). However, when there is a gradient of incre-

mental differences betweenexemplars, it canbedifficult todefine categoryboundarieswithout

some form of verification from the animal. Robert Lachlan and his student Lies Zandberg (in.

comm.) at the University of London are doing just that by performing playback experiments

on zebrafinches and correlating their behaviourswith differences in acoustics of incrementally

different syllables. �eir experiment is currently underway andwhen publishedwill be the first

ever to attempt finding correct categories of syllables from the birds perspective. �is kind of

study is difficult and expensive, so biologists are likely to require their own expert opinion to

perform categorisation of sound units.

Analysing dialects by song structure is therefore heavily predicated on having "correct" sylla-

ble categorisation. If the criteria for "being different" is too relaxed, one risks having toomany

unique syllable types and too few instances per category. On the other hand, a more inclusive

approach will risk overlooking legitimate dialectal variants. A better software solution should

support labelling at different scales, but none of the existing software solutions had support

for this.

7

1.2.3 Amethod for collaborativeworkbetween experts in regards to syllable

classification

Even with multi-scale labelling scheme, it is impossible to avoid personal biases. Different ex-

perts rarely arrive at identical categorisation even for a stereotypic repertoire. When manual

categorisation is involved,most studies settle ona classification that the researchers self-assess

to be "reasonable" (A. E. Jones et al. 2001). Inter-observer reliability assessment to establish the

degree of agreement between experts has been carried out only in a small number of studies,

for example, (Kershenbaum, Blumstein, et al. 2016; Nelson, Hallberg, et al. 2004; Parker et al.

2012; Soha et al. 2004; Tomback andMyronCharles Baker 1984). Aswell as the time-consuming

issue each researcher faces when they label sounds, existing software solutions don’t provide

enough support for collaboration at this step. A better solution should have built-in features

that allow experts to share, assess, and work on the same syllable set simultaneously, where

the products from individual labellers can be quickly aggregated and assessed.

1.2.4 A user-friendly software that allows users to easily extend feature ex-

traction capability

Feature extraction is arguably the most important part of any acoustics analysis. If segmenta-

tion and labelling are done perfectly but the features are not suitable, the results are meaning-

less. On the other hand, there exist features that are tolerant to noise or imperfect timing of the

segmentation. So it is more crucial to get the right set of features than it is to get the segmen-

tation and labelling done perfectly. On this front, all software being used for acoustic analysis

offers feature extraction, but the levels of quality vary. As most of them are closed source, the

user is left at the software creator’smercy to have certain features they need implemented. One

exception is Lusciniawhich is open source; however, extending on Luscinia is an enormous task

as there is a severe lack of scientific computation for Java, the language Luscinia is written in.

A better solution should be open source and easily extended. Because programming at a level

required to extend a software via plug-ins is outside the expertise ofmany biologists, this is not

an option. Extending the software by having it written in languages that have strong support

from the scientific community is a muchmore achievable direction.

8

1.3 Contribution

In this thesis, I develop a computer process for analysing birdsong dialect and implement a

brand new software named Koe that facilitates real-world analysis of that nature. Koe can also

be used for other kinds of analysis of birdsongs, and can also be used for other animal species

too. As of the time this thesis is written, Koe has a user base of nearly 800 users all around the

world, including bird enthusiasts, biology students and researchers. Collectively Koe is now

hosting more than 1300 datasets, many of which are non-bird sounds. During the process of

writing Koe, I andmy colleagues published or have submitted the following papers:

• Fukuzawa, Y., Marsland, S., Pawley, M.D.M., & Gilman, A. (2016, November). Segmenta-

tion of harmonic syllables in noisy recordings of bird vocalisations. In 2016 International Con-

ference on Image and Vision Computing New Zealand (IVCNZ) (pp. 1-6). IEEE.

• Fukuzawa, Y., Webb, W. H., Pawley, M.D.M., Roper, M. M., Marsland, S., Brunton, D.

H., &Gilman, A. (2020). Koe:Web-based software to classify acoustic units and analyse sequence

structure in animal vocalizations. Methods in Ecology and Evolution, 11(3), 431-441.

• Webb, W. H., Roper, M. M., Pawley, M.D.M., Fukuzawa, Y., Harmer, A. M., & Brunton,

D. H. (2021). Sexually distinct song cultures in a songbirdmetapopulation. bioRxiv.

• Roper,M.Michelle,Webb,W.H, Fukuzawa Y, Evans C.Hammer,M.T. A., Brunton, D.H.

(2021). Sexual and temporal variation in New Zealand bellbird song repertoires. bioRxiv.

1.4 WhyKoewaswritten

Initially, the software that developed into Koewas a tool to provide both manual segmentation

and classification of bellbird song syllables on the same platform, in an attempt to get a cleaner

dataset from what my colleagues at Massey University, Dr. Wesley Webb and Dr. Michelle

Roper had been collecting and processing for years. Prior to Koe they were limited to a cum-

bersome workflow because of the number of different software involved in the process, which

became too unwieldy as more data was added.

An idealworkflowwould be iterative, where at the last step the biologists could go back to the

first step and refine the result. However as the data had to be exported and imported through

9

several applications, this was next to impossible. �e result was a chunky, inconsistently la-

belled dataset. Many syllables that sounded distinctly different from each other were given

the same label, and vice versa, many syllables that sounded similar were given different labels.

Analyses performed on this initial dataset produced results that were no better than chance.

Koewaswritten to integrate all tasks in the bioacoustics workflow into one unified platform.

�e data is imported toKoe as raw recordings, then they are segmented into syllables, and then

labelled. If during the labelling process the biologist detects any inconsistency, it is very sim-

ple to go back and correct the mistake. For example, a syllable initially labelled X under re-

examinationmight be split into two syllables Y andZ, then all the researcher needs to do is go

to the segmentation page, split syllable X into two syllables, and give them label Y and Z. In

Koe, this change will be propagated automatically throughout the workflow, whereas in other

software, the entire process needs to be redone.

In classification, one scale of granularity is often not enough. We spent much time dis-

cussingwhether the label set {A,B, B,C} ismoreapplicable than the set {A1, A2, B1, B2, C1, C2,

. . . }. �e solution was to allowmore than one level of labelling simultaneously, and we settled

at having two scales: a broad scale and a fine scale. Another obstacle to efficient labelling was

the sheer number of syllables involved. We examined one dataset (of bellbird song) which con-

tained 21845 individual syllables. On a typical screen, only about 20 syllables can be shown in

one page due to the space necessary to display spectrograms. Even with the broad scale, it was

hard to keep track of the syllable labelled a few pages ago. To alleviate this issue, another fea-

ture was added to Koe: bulk labelling by cluster analysis. Syllables are transformed into feature

space and dimensionally reduced to two, such that they can be visualised as datapoints in a

graph. Syllables that are acoustically similar appear near each other in the graph, where the

user can then group themwith a lasso tool and label them in bulk.

Bulk-labelling datapoints in two-dimensional acoustic feature space is intuitive, however

it depends on how well the features can represent acoustics differences. To arrive at a good

set of features is one of the key challenges of acoustic analysis. �ere is no rule about what

features are better than other, so most studies chose them through trial and error. �erefore,

when implementing Koe, instead of favouring my own choice of features and forcing the user

to stay within that choice like other software does, I incorporated as many acoustic features I

10

could find in the literature. Koe’s feature set includes all of Sound Analysis Pro, Luscinia, Raven,

and other well known features. It is also possible for the user to define their own features by

extending on Koe’s source code, which is released under MIT licence. Koe’s feature extraction

is written entirely in Python using well-supported scientific libraries. Although a little slower

than code written in C/C++, it makes the extension of Koe easier for students and researchers

in biology or other fields that are not involved in programming.

1.5 Outline of the thesis

�is thesis is centred around the scientific aspects of Koe. It is organised as follows:

• Chapter 2: I discuss in broad terms the functionalities of Koe and the decisions for the

programming framework and user interface design that deliver these functionalities.

• Chapter 3: I introduce key concepts of Digital Signal Processing (DSP) for bioacoustics,

the differences of sound production and perception between birds and humans, and the

models thereof.

• Chapter 4: I discuss syllable segmentationmethods for birdsongs includingmanual and

automation attempts, and how these techniques are implemented in Koe.

• Chapter 5: I review acoustics features that are commonly used in bio-acoustics.

• Chapter 6: I discuss feature-space clustering methods and how it is visualised in Koe for

rapid syllable labelling.

• Chapter 7: I discuss how sequence analysis is implemented in Koe and its application

in analysing birdsong dialects. �e chapter is concluded with a case study using Koe to

analyse song structures of male and female Bellbirds.

• Chapter 8: Conclusions and future work

11

CHAPTER 2

DESIGN AND FUNCTIONALITY OF KOE

2.1 Introduction

Existing acoustics software prior toKoewere designed for single users and distributed as stand

alone, installable packages. Some are only available forWindows (Sound Analysis Pro), some re-

quire installing extra software to function (SoundAnalysis Pro requiresMySQL, Luscinia requires

Java). Koe is a web app, to the best of my knowledge, at the time of writing this thesis, it’s still

the first and only acoustic software distributed as a web app. Being a web app removes all ob-

stacles for the general public from accessing the platform. In addition, Koe is also packaged

as a Docker image, allowing more tech-savvy users to download and install it locally on their

own computer or for their institution. For researcherswho are familiarwith coding, the source

code ofKoe is available for download, change and run at localhost. Table 2.1 shows the targeted

users, purpose of use, and the URL where the three distributions of Koe can be found. In this

chapter, I discuss in broad terms the functionalities of Koe and the decisions for the program-

ming framework and user interface design that deliver these functionalities.

2.2 Languages, framework and libraries

Before the inception of Koe, I was involved in two open source programs: AviaNZ1 which was

created by my supervisor Prof. Stephen Marsland, and Luscinia 2 by Robert Lachlan in an at-

1https://www.avianz.net/
2https://rflachlan.github.io/Luscinia/

12

Table 2.1: �ree kinds of distribution ofKoe. Koe is distributed through three methods: as an free
online tool, as a runnable Docker image, as anMIT-licence open source project.

Type Online Docker image Source code

User Researchers and the
general public

Researchers or technicians at
an institution

Programmers / Re-
searcher with coding
knowledge

Purpose To use the most re-
cent version of Koe
without any setup

To set up their own Koe server
for speed and keeping their

data private

To customise Koe, e.g.
extend functionality

Access
point

www.koe.io.ac.nz hub.docker.com/repository/
docker/crazyfffan/koe

github.com/fzyukio/
koe

tempt to extend their functionality to serve what I and my colleagues needed - a software that

allows labelling of syllables to be carried out rapidly and with multi-granularity support. Both

programswere set up in away that rendered this job near impossible in reasonable time. SoKoe

was invented out of necessity to fulfil an immediate need. However the design from the begin-

ning has always been tomakeKoemore than just a short-term solution. By comparing existing

acoustic software (paid and free) with what I envisaged for Koe, three design principles were

made:

• Koe needs to be accessible without complicated installation process

• Koe needs to support multi-user out of the box

• Koe needs to be easily extendable

2.2.1 Koe as awebapp

Unlike all other acoustics software, Koe runs as a webapp. �e official site is publicly available

at https://koe.io.ac.nz, but it can also be setup to run locally and made accessible only to local

users of an institution. As a webapp, there is no need for the users to install anything, all they

need is a modern web browser. �is proves useful for collaboration, for example, cooperative

labelling of a dataset by multiple experts, or projects involving the general public. In Chapter

6, I presented a case study that was organised as a citizen science project with a large number

of non-expert participants. �is project was only possible thanks to Koe being accessible as a

webapp.

13

www.koe.io.ac.nz
hub.docker.com/repository/docker/crazyfffan/koe
hub.docker.com/repository/docker/crazyfffan/koe
github.com/ fzyukio/koe
github.com/ fzyukio/koe
https://koe.io.ac.nz

2.2.2 Data is stored in the backend and can be exported to the end user

Data in Koe consists of 1) raw audio files, 2) compressed audio files, 3) syllable end-points, 4)

spectrograms, 5) label data and 6) extracted feature data. All data in Koe is user-specific and is

foreign-key constrained to the user key. �ey are stored on the server using various storages:

• Raw and compressed audio files are stored physically on the hard drive. Unlike Luscinia

which stores everything in an H2 database (making the program extremely slow and

memory consuming), only the ID and name of the audio files are stored in the database.

Storing audio files on the hard drive also allowsKoe to read only an individual segment of

a file and not the entire file, significantly reducing load time. �is is necessary because in

Koe there aremany processes that involve only certain kinds of syllables; for example, the

user can filter syllables based on their length, labels, start and end points, etc. It would

bemuch slower to read 100 audio files in full just to extract 200 syllables from them than

to read only the parts of 100 files that contains those 200 syllables.

• Syllable metadata is stored in the database. �e metadata includes only start and end

point, min, max and average fundamental frequency, making it very light-weight and

filterable.

• Syllable label is stored in the database and is foreign key constrained to several identifiers

– Syllable key: which identifies the syllable it is labelled for.

– User key: which identifies the person who gives a syllable its label.

– Attribute key: which identifies the granularity of the syllable, e.g. broad-scale or

fine-scale.

• Spectrograms are stored as static images to speed up front-end rendering. A spectro-

gram of a syllable never changes regardless of the label and the user, therefore it is un-

necessary to generate each syllable on the fly at the front end. Storing spectrograms as

static images increases hard drive use, however as the images are small and compressed

(PNG format) the increase is not significant and the speedgained is awellworth the trade

off.

14

• Extracted feature data is stored as binary files on the hard drive. �is is the secondmost

space-intensive data after raw audio files. �e number of distinct features that can be

extracted from each syllable is more than 100, therefore reading feature data is themost

intense in hard-drive access. Well-known binary storage libraries such asH5 are not fast

enough to accommodate this large number of features. I wrote a new binary storage

library that allows rapid data access similar to theway syllables are read from soundfiles.

�e design and implementation of this library is detailed in section §5.4.4.1.

Users of Koe own their data, thus I added functionalities to the front end to allow users to

download any of the aforementioned data (audio files, extracted feature data, and label data),

aswell as exporting data from the table they are viewing inCSV format. �e exported label data

can also be used to restore their dataset if they have lost or damaged their data i.e. by changing

labels in bulk bymistake. It also facilitates data migration should they wish to move their data

from the official Koewebsite to a local copy of Koe running on their own server.

2.2.3 Koe’s backend is implemented in Python tomaximise extendability

At the timeKoewas being conceived, there were two languages with themost support from the

scientific community: Python and R.�e levels of support differ from domain to domain. Sci-

entific computation and plotting libraries often support both languages, while Python has an

edge on acoustics libraries, and R has stronger support for statistics. However, there is noma-

ture webserver framework for R, while for Python there are numerous - most notably Django

and Flask. �e decision was made to select Django over Flask because it is more mature and

flexible than Flask.

2.2.4 Libraries

Koemakes use of the following libraries for scientific computation:

• NumPy (Python Software Foundation 2017) for fast data manipulation, as almost every

computation performed in Koe is based on array or matrix.

• Scipy (E. Jones et al. 2014) which provides basic signal processing and statistical tools

• librosa (Mcfee et al. 2015) is used to extract many well-known acoustics features.

15

• Scikit-learn (Pedregosa et al. 2012) for dimensionality reduction

• Scikit-image (derWalt et al. 2014) for image-based features.

• Tensorflow (TensorFlow 2017) is used only at the backend for machine-learning tasks.

�is area is still under development and once completed will expand the capability ofKoe

significantly.

In addition, I have written a number of libraries to provide scientific computation not sup-

ported by any library, these are:

• python-matlab-functions 3 is a python reimplementation of several useful functions in

Matlab

• mt-spec-features 4 implements all multi-tapering features which are the core of Sound

Analysis Pro (Mcfee et al. 2015)

• python-cspade 5 is reimplementation of the algorithm Spade (Zaki 2001) in C++, with

python wrapper written in CPython

In order to provide an easyway to addmore features toKoe, all features provided in the afore-

mentioned libraries are wrapped in a common interface, such that the call to any feature has

the same signature nomatter which library it comes from.

2.3 Database design

�eDjango framework isdatabase-agnostic andcomesbundledwithanObjectRelationalMap-

ping (ORM) framework that builds appropriate database structure for any backend based on

the declared models and their relationship. For example, a simple database "driver" with two

models - Person and Car - in Code block 1 will generate the database structure presented in

figure 2.1.

I chose MySQL for Koe’s database backend. �is decision is made based on the observation

that MySQL has very high performance and is well-understood by researchers and IT/CS stu-

dents (it is the database of choice for teaching atMassey University). However, advanced users
3https://github.com/fzyukio/python-matlab-functions
4https://github.com/fzyukio/mt-spec-features
5https://github.com/fzyukio/python-cspade

16

1 from django.db import models
2

3 class Person(models.Model):
4 name = models.CharField()
5 birth_date = models.DateField()
6

7 class Car(models.Model):
8 make = models.CharField()
9 year = models.IntegerField()
10 model = models.CharField()
11 owner = models.ForeignKey(Person)

Code block 1: Simple database model declared in Python following Django’s ORMmodelling system.
�e database has twomodels: a Personmodel with name and birth date and a Car model with make,

year, model and is owned by a Person

id

year

id

name

id

year

id

name

Figure 2.1: ER Diagram of the database structure generated by Django from the models declared in
Code block 1. �e actual database is SQLite, imported into DBeaver to generate this diagram.

of Koe using the Docker or source code distribution on their own server are free to choose any

database they like. Koe has been tested to run smoothly on PostgresDB and SQLite. PostgresDB

has the benefit of high performance and supports concurrency better thanMySQL, however it

is more difficult to set up. SQLite is stored as a single file on the hard drive so it is very easy to

set up andmigrate, however it’s not designed to have high performance on large scale.

Koe’s database models are quite complicated. Figure 2.2 shows a trimmed down version of

the diagram that visualises the relations between models in Koe. Note that there are far more

actual tables in MySQL needed to realise these models and relationship.

2.3.1 Koe’s database is designed to be user centred

Unlike other bioacoustics software, Koe requires the user to sign up and log in before they can

start theirwork. Users need tofirst create aDatabase, ofwhich they are the owner, or be invited

17

id

name

id

fs
length
name

start
end

noc

id

name

id
id

name

hpf
lpf
nfft

id

name

id

id

name

id

name id

id

tid

id

id

genus

name

id

name
type

id

id

id

name

id

fs
length
name

start
end

noc

id

name

id
id

name

hpf
lpf
nfft

id

name

id

id

name

id

name id

id

tid

id

id

genus

name

id

name
type

id

id

Figure 2.2: A simplified ER Diagram of Koe’s database structure. �e actual database is MySQL.
DBeaver connects to the database to generate this diagram

18

to work on someone else’s database, which they can be granted different access rights. �e

owner has full control of what other users can do, in particular, there are 9 levels of access that

a user can have, from lowest to highest, as specified in Table 2.2. �e lowest 6 permissions

(View, Annotate, Import data, Copy files, Download files, Add files) are considered safe aswhat

the user is permitted to do does not affect other users’ data at all.Modify segments andDelete files

change the collection of syllables as well as altering the start and end points of the syllables,

thus are considered "unsafe". �e safe permissions are designed to facilitate various needs of

a citizen science project, such as allowing the general public to participate in data labelling,

or make recordings and upload files to an open dataset. �e unsafe permissions are reserved

for close associates of the database owner, allowing collaborators to adjust the dataset without

having to consult the entire group.

Table 2.2: User permissions inKoe.. Asterisk denotes actions that effect other user’s data

Permission Vi
ew

An
no
ta
te

Im
po
rt
da
ta

Co
py
fil
es

D
ow
nl
oa
d
fil
es

Ad
d
fil
es

M
od
ify
se
gm

en
ts

D
el
et
e
Fi
le
s

Ad
m
in

View label X X X X X X X X X
Playback sound X X X X X X X X X
View clustering X X X X X X X X X

View sequence structure X X X X X X X X X
Create new label set X X X X X X X X

Copy other user’a label data X X X X X X X
Copy files into their own database X X X X X X
Download compressed audio files X X X X X
Download extracted feature data X X X X X

Add new audio files X X X X
Adjust start and end points of syllable X X X

Delete syllables * X X X
Add new syllables * X X X

Delete audio files (and all segments therefrom) * X X
Change other user’s permission X

19

2.4 Front-end design and framework

2.4.1 Koeworkflow

I designed Koe to provide end-to-end functionality in an intuitive and flexible workflow, as il-

lustrated in Figure 2.3a. Each step in the workflow has a specific page in Koe where the user

can perform the task (e.g. segmenting, measuring, classifying, etc.). Any step in the workflow

can be revisited, and modifications will dynamically update throughout the program. A more

detailed breakdown of these step is provided in Koe’s documentation 6. In general, the user

starts with uploading their data to Koe in the form of raw recordings / songs (in wav format).

Recordings aredivided into songs,whichare segmented intounits. Koe extractsunit features to

produce similarity indices and interactive ordination plots, which help a user to rapidly and ac-

curately classify units. Once complete, classification can be validated by independent labelling.

Koe provides tools for analysing repertoires and sequence structure. Data can also be exported

for external use.

Similar to the back end, the front endofKoe is also designed to be easily extendable. Fromthe

start, this design has allowedKoe to evolve incrementally as I extended the back end to facilitate

more modes of analysis. Koe provides one webpage for each stage of the acoustics process. In

Koe these pages are accessible through a side menu, and are organised in an order similar to

that of the corresponding stages in a typical acoustics process.

2.4.2 Front-end design

Koe uses amixture of theModel-View-Controller (MVC) and Single-Page Application (SPA) pat-

tern to take full advantage of both server-side and client-side rendering. When a page is vis-

ited the first time, the server generates skeleton HTML code from templates. When this code

reaches the client and finishes loading all JavaScript codes, the final result is rendered via ex-

tra AJAX requests and shown to the user. From this point any user interaction with the page is

handled by an AJAX request, i.e. the page does not reload after each action. �is is necessary

to keep the app responsive, because a full server-side renderingmethodwill reload a pagewith

6https://github.com/fzyukio/koe/wiki

20

https://github.com/fzyukio/koe/wiki

Segment songs into
units

Segment songs into
units

Classify units
using interactive

ordination plot and
unit table

Classify units
using interactive

ordination plot and
unit table

Validate
classification

e.g. independent labelling

Validate
classification

e.g. independent labelling

Upload raw
recordings / songs

(wav files)

Upload raw
recordings / songs

(wav files)

Segment recordings
into songs

Segment recordings
into songs

Analyse repertoire,
sequence structure
Analyse repertoire,
sequence structure

Import song
segmentation
and metadata

from csv

Import song
segmentation
and metadata

from csv

Import unit
segmentation
and metadata

from csv

Import unit
segmentation
and metadata

from csv

Pre-segmented
/ labelled data
Pre-segmented
/ labelled data

Export
data
(csv)

Export
data
(csv)

Extract unit
measurements

Extract unit
measurements

(a)A typical acoustics process carried out in Koe
(b)Koe’s side menu organisation of

pages

Figure 2.3: Koe’s acoustics workflow and its accessibility from the main app. A Koe database is
integrated; any step in the workflow can be revisited, andmodifications will dynamically update
throughout the program. Raw recordings / songs (in wav format) are uploaded. Recordings are

segmented into songs, which are segmented into units. Koe extracts unit features to produce similarity
indices and interactive ordination plots, which help a user to rapidly and accurately classify units.
Once complete, classification can be validated by independent labelling. Koe provides tools for
analysing repertoires and sequence structure. Data can also be exported for external use.

up to tens of thousands of rows every time there’s a smallest change, such as to label a syllable.

AJAX requests from the client side are respondedwith JSON-formatted data, and notHTML

code. �is is yet another necessity as a typical user’s dataset contains hundreds up to tens

of thousand of syllables, each syllable has many properties, making it unfeasible to convert a

dataset into ready-to-display HTML code in a timely manner, especially when there are mul-

tiple users active at the same time. �us, upon an AJAX request, the server simply responds

with the pure, raw data that can be queried directly from the database, and leaves rendering a

responsibility of the client side.

21

2.4.3 Components of a page

Pages in Koe have a similar structure: a side menu on the left and a main section that spans

the remaining space. �e side menu contains a control section, which is defined by the page

template, and a navigation menu to allow access to other pages. �emain section can contain

various component, suchas spectrogram, song info, playback control, anda spreadsheet-typed

grid. �egrid is themost commoncomponent of apage, although somepagesmighthavemore

thanonegrid (such as theDatabasemanagement page), or nogrid at all (such as theOrdination

page). Figure 2.4 shows the layout of the syllable segmentation pagewith different components

organised in the main section and Figure 2.5 shows other components used in different pages

of Koe.

Figure 2.4:Organisation of a page in Koe: Sidemenu 1 , which contains the control section 3 and the
navigation menu 4 ;Main section 2 which can contain any combination of: sound sonogram 5 ,

sound spectrogram 6 , playback controller 7 , metadata 8 , data grid 9

2.4.4 Extendability

Most of these components are used in more than one page, for example, the spectrogram sec-

tion is used in both "Upload & split raw recordings" and "Segment songs into units"; the data grid is

used in almost every page, sometimesmore than once per page. In order to achieve that, these

22

(a) Job lodgement

(b) Interactive force-directed graph

(c)Multi-grid system

(d) Interactive MDS plot

Figure 2.5:Other components of Koe’s main section: (a) Job lodgement, here the figure shows the
feature extraction section, where the user can lodge a job to extract features from syllables in their
dataset. (b) Interactive force-directed graph, in Koe it is used for sequence analysis. (c) Multi-grid
system, here the figure shows the main section of the database management page. (d) Interactive

multi-dimensional scaling (MDS) plot, in Koe it is used for cluster analysis and bulk syllable labelling.

23

1 // Extend FlexibleGrid to change properties specific to this grid.
2 class SyllableGrid extends FlexibleGrid {
3 init() {
4 super.init({
5 'grid-name': 'labelling',
6 'grid-type': 'segment-info',
7 'default-field': 'label_family',
8 gridOptions
9 });
10 }
11 }
12 // Create a new grid to display syllables
13 export const syllableGrid = new SyllableGrid();

Code block 2:�e instantiation of the syllable grid used in Segment songs into units page. �e
SyllableGrid extends FlexibleGrid to overwrite specific properties of the syllable grid.

1 const databaseGrid = new FlexibleGrid();
2 const collectionGrid = new FlexibleGrid();
3 const dbAssignmentGrid = new FlexibleGrid();
4 const versionGrid = new FlexibleGrid();
5 const syllableGrid = new FlexibleGrid();

Code block 3:�e instantiation of all grids used in theDatabase management page. None of them
extends FlexibleGrid as the default properties and behaviours of FlexibleGrid are sufficient.

components are written as generic classes. A specific page creates subclasses from these com-

ponents to overwrite certain properties or behaviours. �e grid system showcases the strength

of this approach. Each grid is an instance of a FlexibleGrid, which is a heavily modified

version of SlickGrid7. �e modified version is partly available at https://github.com/fzyukio/

SlickGrid, althoughmost of Koe-specific plug-ins are only available in Koe’s source code.

A FlexibleGrid, as the name suggests, is written in a way that makes it very flexible. It can

be used out of the box, or extended with very little overwriting. For example, Code block 2

shows how the data grid used in the syllable segmentation page (Figure 2.4) is instantiated by

extending the FlexibleGrid, and Code block 3 shows how all five grids used in the database

management page (Figure 2.5d) are instantiated directly from the FlexibleGrid. Koe’s grids

are vastly different from each other, yet can be handled by essentially the same code.

7https://github.com/mleibman/SlickGrid

24

https://github.com/fzyukio/SlickGrid
https://github.com/fzyukio/SlickGrid

2.5 Functionalities ofKoe

Each step of the workflow presented in section §2.4.1 has a program view tailored to that task.

Figure 2.3b shows the navigationmenu of Koewith links to access these pages. As can be seen,

there is almost a one-to-one mapping between the workflow and the organisation of these

links. In this section, I highlight significant features of each program view. �e coming chap-

ters will go into details of their algorithms and operations.

2.5.1 Upload and segment recordings

InKoe, the user can partition raw recordings into individual vocalisation bouts, termed "songs"

(Upload & split raw recordings view), and segment songs into their constituent acoustic units

(Segment songs into units view). �e tasks are similar; they involve the user selecting start/end-

points of songs or units, respectively, on a spectrogram, then committing the selections to the

database (stored securely on the Koe server). It is up to the user to decide on segmentation

criteria appropriate to their species/question. �e user can adjust playback speed, spectro-

gram contrast and time-axis zoom. Saved selections become available in other program views.

Acoustic units are not stored as audio segments, but as start/endpoint information referencing

the source song; the user can freely readjust unit segmentation and program views will update

dynamically. For any songs already segmented intounits in other software, start/endpoints can

be imported as a csvfile. Pre-partitioned songfiles canalsobeuploadeddirectly to thedatabase

inViewall songs. Users can grant database access to other users, with custompermission levels.

2.5.2 Extract acoustic features fromunits

In quantitative analysis, raw signals are often replaced by their compact representations using

a specific set of features, extracted from the signals. Analyses performed on compact represen-

tations can bemore effective and computationally efficient. InExtract unit features view,Koe can

extract awidearrayof spectral-, tempo- andchroma-related features for bioacoustic analyses8.

Extracted features are utilised by Koe to construct ordinations and similarity indices (Sections

§2.5.3.1 and §2.5.3.2), and can be exported as csv files for analysis in other software.

8See https://github.com/fzyukio/koe/wiki

25

https://github.com/fzyukio/koe/wiki

2.5.3 Classify units

Manual classification requires the ability to visually/acoustically compare and label large num-

bers of units quickly. Koe offers interactive ordination plots, unit tables and class exemplars as

complementary tools for this purpose.

2.5.3.1 Interactive ordination plots

Apreviouslyunexploredpotential of ordination is to expedite themanual classificationofunits.

Koe’s interactive ordination plots (Figure 2.6) incorporate audio playback, spectrograms and

classification functionality, so that a user can simultaneously use their audio-visual perception

of unit similarity and the structure of the data to rapidly and robustly classify units

Figure 2.6: Interactive ordination view allows the user to encircle groups of points on the plot with the
lasso tool, to view their spectrograms and hear their audio. Mousing over a point in a selection

highlights the corresponding spectrogram in the left-hand panel. Selections can be labelled in bulk
directly on the plot or opened as a unit table to view detailed unit information. �e user can zoom,
toggle the visibility of classes, and export the plot as a vector graphic. �is example shows a t-SNE

ordination of 7189 syllables of male and female bellbird song.

Koe implements three ordination techniques: Principal Component Analysis (PCA; (Pear-

son 1901)), IndependentComponent Analysis (ICA; (Comon 1994)), and t-distributed Stochastic

Neighbour Embedding (t-SNE; (Van Der Maaten and Hinton 2008)). t-SNE aims to preserve

local structure in the data and is particularly effective for defining and discriminating between

26

clusters. �e user encircles groups of points on the plot to see spectrograms and hear playback

of units; if a selection appears acoustically consistent, it is classified inbulk. �euser can toggle

visibility of each class independently and can zoom to examine structural detail.

2.5.3.2 Unit tables

As a complement to the ordination plot, units can be viewed as an interactive table (Figure 2.7).

Each unit is represented by a row containing spectrogram, audio and associated information

(class label, unit duration, song ID, individual ID, date, etc.). �e table can be sorted/filtered

by any column. A notable feature is the similarity index, which ranks units based on acoustic

similarity. �e index is produced as follows: from the raw feature measurements or from the

ordination, Koe calculates pairwise Euclidean distance between each pair of units, then con-

structs a ladderised dendrogram using agglomerative hierarchical clustering (UPGMA) (Sokal

1958). �e order of the dendrogram leaf nodes becomes the similarity index. Sorting by the

similarity index column orders the table so that similar units arrange together, allowing them

to be selected and labelled in large batches

Figure 2.7: Koe ’s unit table is designed for classifying, annotating and filtering units. Each unit row
contains a spectrogramwhich becomes enlarged during mouse-over. Unit audio plays when a

spectrogram is clicked. �e table can be sorted/filtered by any columns. Sorting by the similarity index
column arranges units by spectral similarity for expedited labelling.

27

2.5.3.3 Class exemplars

A class catalogue is a useful reference during classification. Koe produces one automatically

in Exemplars view, with exemplar spectrograms and playback for every class, making visu-

al/acoustic comparison easy. �e catalogue updates dynamically as classification progresses,

displaying 10 randomly-chosen exemplars per class to reflect within-class variability.

2.5.3.4 Classification granularity

Without a priori knowledge of the animal’s perception of units, a researcher must identify

classes and assign units based on their ownperception. Classifying units atmultiple hierarchi-

cal levels of granularity increases robustness by enabling analyses at different scales. Koe offers

up to three granularity levels (fine, medium, and broad-scale) for labelling in the Ordination

and Unit table views. For example, the units in Figure 2.7 are labelled at two granularity levels:

the broad-scale Upsqueak family is subdivided at the fine-scale into Upsqueak(harmonic) and

Upsqueak(shrieky).

2.5.3.5 Validate classification through independent labelling

To ensure robustness of manual classification, a common validation method is to have several

judges independently label thedataset andcalculate theirdegreeof agreement; highagreement

lends credibility to the classification (Nelson,Hallberg, et al. 2004; Parker et al. 2012). Typically,

2–5 judges are used, but robustness can improve substantially with more judges (A. E. Jones

et al. 2001). Koe facilitates independent labelling experiments. A subset of songs/units can be

selected and copied to a new database. �e database owner grants labelling access to partici-

pating judges,who label thedataset online. �e labels of participants are automatically saved to

the server and are compiled to evaluate concordance (see Section §6.5 for a real-world example

using 74 judges).

2.5.4 Analyse sequence structure

For many animals, songs are comprised of acoustic units ordered into a sequence (Kershen-

baum,Blumstein, et al. 2016). �eaimof sequence analysis is to reveal patterns in the sequence

structure of songs, which Koe can do in three ways, outlined below.

28

2.5.4.1 Filter songs by subsequence

In View all songs a user can filter for songs that contain a certain subsequence of unit labels

(Figure 2.8). �is could be used to identify all instances of a certain song type, for example.

Figure 2.8: View all songs displays songs in an interactive table, with one song per row. Segmented
songs (like the example in the top panel) are represented as a sequence of unit labels. Entire songs can
be played, or individual labels clicked for unit playback and spectrograms. Here the filter has returned

all songs containing Trill followed byDragon (highlighted).

2.5.4.2 Discover and visualise vocal patterns using sequence rulemining

As one way of exploring rules that may govern song structure i.e. syntax; (Robert F. Lachlan

et al. 2013), Koe uses the SPADE (constrained Sequential Pattern Discovery using Equivalence

classes) algorithm (Zaki 2001) to discover commonly-occurring sequences in a set of songs.

Two-unit associations fromSPADE can be visualised using a directed network. �e network

models the direction and strength of association between pairs of units, across a population

of songs. Units are represented by nodes which are joined by lines (edges) if the units occur

consecutively. �e order of units is indicated by arrow direction, and strength of association

between units (lift) is represented by edge thickness. Visually cluttered networks can be sim-

plified using the filter, e.g. to show only associations with high lift.

29

�us, Koe offers pattern recognition and sequence visualisation. If a user desires to make

formal inferences, such as assessing the influence of experimental factors (fixed effects) and

random effects of individuals on sequence structure, sophisticatedMarkovian frameworks ex-

ist (Sarkar et al. 2018). A user can export sequence data from Koe for external analysis.

2.5.5 Conclusions

Koe is an acoustics tool that provides a seamless workflow for biologist from the input of raw

recording to the final results of feature extraction, clustering analysis and sequence analysis. It

is designed to beflexible for end-userwith any level of coding experience. Koedelivers highpre-

cision results by facilitate manual operations in most of the processes, making no assumption

about the acoustics properties of the vocalisation of any bird species. �is is due to the differ-

ences between birdsongs and human speech, rendering the application of speech processing

techniques on birdsongs unreliable. In the next chapter, I go over these differences and how

they affect the models of sound production/perception when applied to bird songs.

30

CHAPTER 3

BACKGROUND

3.1 Basic concepts of Digital Signal Processing (DSP)

3.1.1 Sounds are signals recorded as a function of time, but best represented

as a function of time-frequency

A sound is a mechanical wave of pressure which changes over time. As such it can be viewed

as a time series sequence of air pressure. Sound can also be characterised by the frequency (or

frequencies) at which it oscillates. When viewed as a time series, the sound is said to have a

temporal structure: the pattern of energy it carries at a specific point in time. �is is how audio

signals are recorded and played back by a digital device such as a computer. More precisely,

audio signals are represented as a function of the magnitude corresponding to the variant in

voltage when a sound reaches the microphone. �e plot of this function is called an oscillo-

gram, or awaveform (the latter term ismore frequently used). �is plot is not always useful as it

does not display any information about the frequency of the sound. �us, it is far more com-

mon in acoustics to transform the raw audio input (pure time domain) into the time-frequency

domain. �e visualisation of a time-frequency domain function is called a spectrogram. Fig-

ure 3.1 shows both the waveform (top) and the spectrogram (bottom) of the same bird song for

comparison: elements of the call display clear spectral contents that change from element to

element, while the waveform only shows temporal and amplitude modulation.

31

500 1000 1500 2000 2500 3000 t (ms)
0

5

10

15

f(
kH
z)

am
p

Figure 3.1:Oscillogram (top) and spectrogram (bottom) of a Bewick’s Wren thryomanes bewickii song.
FFT parameters: fs=44100Hz, nFFT=512, overlap=256, Hamming window. Copyright: Ted Floyd

(Licensed under CC BY-NC-SA 4.0). Accessible at www.xeno-canto.org/318283. Only one of the
three recorded songs is shown.

3.1.2 Analyse sounds in time-frequency

�e earliest method to transform signal from a time domain to a time-frequency domain is

the Fourier transform and it is still one of the most used tools in audio analysis. It is based on

the observationmade by the Frenchmathematician Joseph Fourier in the 19th century that any

periodic function can be expressed as the sum of an infinite number of sine and cosine waves.

3.1.2.1 Naive Fourier Transform: themaths

Mathematically, a discrete Fourier transform is a series of filters (a filter bank)where eachfilter

converts a time series sequence into a single value, which is interpreted as themagnitude of the

corresponding frequency component. Mathematically, the magnitude of the k-th frequency

component,X [k], is calculated as:

X [k] = 1

N

N−1∑
n=0

x[n]e−2πin
k
N (3.1)

Where x[n] is the original time series sequence andN is the total number of frequency compo-

nents.

A Fourier transformwith N=512 results in 512 frequency components, of which only the first

half is useful because for sequences of real numbers such as audio signal, the frequencydomain

is always symmetric. Together these 256 components cover the range of frequencies from0 to a

32

cut-off threshold called the Nyquist frequency, which is expressed inHz and has value equal to

half the sampling rate (fs). E.g. an audio with fs = 10000 samples per second has the Nyquist

frequency of 5000 Hz. �e k-th frequency component has centre frequency of k
N
fs
2
Hz.

3.1.2.2 Fast Fourier Transform: the practical implementation

Calculating all k components according to equation 3.1 is very time-consuming (it has com-

putational complexity of O(n2)). In 1965 Cooley and Tukey invented Fast Fourier Transform

(Cooley and Tukey 1965) which reduces the complexity toO(n log(n)) and quickly became an

indispensable algorithm in digital signal processing.

3.1.2.3 Short-Time Fourier Transform: the usage

An important assumption the Fourier transformmakes is that the time series sequence is con-

tinuous and stationary. Both are unrealistic for real life audio signals. Human speech and bird

songs are considered stationary only in short time (typically 20-30 ms (Raju et al. 2012)), thus

anything longer than that needs to be analysed frame by frame, with each frame enclosing a

period of stationary signal. Each frame is typically overlapping with the previous as to not

miss out the fine details between two successive frames. �is gives rise to the technique called

Short-Time Fourier Transform (STFT) that does exactly that. �e result is not one sequence of

frequency magnitudes but a collection of frame-level frequency components lined up in time.

A visualisation of this two-dimensional data is called a spectrogram, where analysis in time and

frequency can be done simultaneously.

�e frame size decides the frequency and time resolution of the spectrogram. A frame needs

tobe chosen such that it is large enough to cover low-frequency components (that change slowly

hence more samples are required) but small enough to capture fast-changing and short-lived

components at high frequencies. �e number of frequency bins is (because of symmetry) al-

ways half of the frame size, while the frequency range is entirely dependent on the sampling

rate. �us the frequency resolution is proportional to the frame size. However, larger frame

size results in poorer time resolution, since the location of short-lived, high-frequency com-

ponents dissolve in a larger time window. �is is known as the principle of uncertainty in time-

frequency, which is closely related to the infamousHeisenberg uncertainty principle. Choosing an

33

acceptable frame size is dependent on thenature of the sound (e.g. the rate of change in human

speech is less than in birdsongs, thus an application of birdsong analysis generally should use

a smaller frame size, although it also depends on the actual species) as well as the performance

constraints (smaller frame size results in more frames, each needs one Fourier transform op-

eration thus more computational power is needed).

3.2 Soundproductionandperceptioninbirdsversus inhumans

3.2.1 Birdscanproducetwosoundsatonce,withinawiderangeof frequency

Studies into the parallels between bird vocalisations and human speech have revealed a num-

ber of commonalities in terms of communication, acquisition and development (Patricia K

Kuhl 1989; P. Marler 1970). Even the effect of social interaction on the ontogeny of vocalisation

repertoires in human babies and young birds is similar (Doupe and P K Kuhl 1999; P. K. Kuhl

2003). �ese parallels exist despite striking differences in the sound producing organs (Riede

and Goller 2010). However, there are key differences between birdsongs and human speech,

making it less straightforward to apply speech processing techniques to birdsongs.

In birds, sounds are produced by the syrinx which is part of the respiratory system and is

located at the caudal end of the trachea. Both sides of the syrinx can function at the same time

and independently from each other which allow some bird species to create two sounds si-

multaneously. In contrasts, the human larynx is located at the top of the throat and can only

produce one sound at a time. However, human canmake evenmore complex sounds than birds

by skilfully coordinating the larynx, tongue, lips and teeth, the ability that is lacking in birds.

Figure 3.2 shows the generalised anatomy of the avian syrinx, illustrating the double voice

mechanism and examples of the double voicing as it appears in spectrograms. �eir range of

frequency can bemuch wider than human speech and the rate of change can bemuch steeper.

�is might challenge many well-known techniques used in human speech as to whether they

can be effectively applied to birdsongs. �e acoustics properties of human speech are more

restrictive than that of bird songs, due to many biological constraints we share as a species.

Human speech typically has fundamental frequency in the range 50-250Hz (male) and 120-

400Hz (female)(Bagshaw et al. 1993), andwe don’t vary our pitch changemuchwhile speaking.

34

Trachea

Lateral labium

Bronchus

(a)�e syrinx’s anatomy

(b)A trill

(c)A double sweeping tone

(d)A complex trill

Figure 3.2:�e bird’s syrinx (a) and spectrograms of some complex sounds birds canmake with the use
of their double-voice syrinx, which contribute different spectral content to the sound (red and black
parts). b) A Northern Cardinal’s trill c) A Brown�rasher’s double sweeping tone d) AWood�rush’s

extremely complex trill with a series of higher-pitch sweeping tones layered above a series of
lower-pitch mini-trills. Figure adapted from https://academy.allaboutbirds.org/birdsong/

�is is far less variable than that of a typical bird species.

Birds on the other hand can have several of magnitude wider range of frequency (for ex-

ample, Table 3.1 shows the frequency ranges of several New Zealand bird species as observed

by Priyadarshani (Priyadarshani 2016)) and they have wide-spread ability to make sweeping

sounds that span a large range of frequency in a short amount of time.

Table 3.1: List of species, their call types and frequency range

Species/call type Observed frequency range (Hz)

North Island brown kiwi

Male 500 - 8000
Female 500 - 6500

Ruru

“Trill” sound 500 - 8000
“More” sound 500 - 2000
“Pork” sound 500 - 2000

Kakapo

“Booming” sound 0 - 800
“Chinging” sound 1000 - 12000

35

https://academy.allaboutbirds.org/birdsong/

3.2.2 Birdvocalisationsareacousticsignalsstructuredintimeandfrequency

Birdsong is thought to be hierarchical in structure, able to be divided into different levels of

complexity (Berwick et al. 2011), however the naming of these levels has not been standardised

(�ompson et al. 1994). Given the diversity of bird vocalisations, it is entirely understandable

that finding a one-size-fits-all naming system for all species is difficult and probably useless.

�ere have been attempts in proposing a standardised systemof naming such as Shiovitz (1975)

who found 20 terms that were used to describe 10 levels of vocal units in indigo buntings and

proposed to consolidate them into 6 categories. �ompsonet al. (1994) found in addition 9more

terms and recognised that proposing a rigid naming system is futile. Instead they proposed

to use a formula using three basic units called T, Mr and Ms to quantify any naming system.

However these proposals have not been adopted. �e common theme however, is to divide a

song into smaller vocal units based on the duration of the units and the silent gaps between

them, based on the discernment of human audition. �e smallest unit of bird vocalisation is

the “element” (sometimes referred to as “note”), which is very short and typically go together

with other elements to form a syllable. In many cases, birds produce two sounds at once using

two sides of their syrinx simultaneously (See section §3.2.1) and each sound is an element with

no gap between them. Syllable is most commonly used to describe the unit that are separated

from other units by a silent gap, although as Kershenbaum, Blumstein, et al. (2016) points out,

changes in acoustic features without the presence of a silent gap can also indicate that a new

syllable has started. A group of syllables or elements often go together in a pattern is a trill,

motif, or phrase. A song can be a long phrase or containsmultiple phrases. �e information in

birdsong is encoded in the types of unit present and sometimes their temporal arrangement

(Kershenbaum, Blumstein, et al. 2016).

In this thesis, Iuse thedefinitionof a syllable asdefinedbyRanjardandRoss (2008): “a syllable

is part of a song characterised by a high value of autocorrelation of the signal and with a continuity in the

fundamental frequency”. Multiple syllables that followaparticular order formaphrase anda song

can containmultiple phrases. Figure 3.3 shows the structure of a typical song of NewZealand’s

North Island saddleback (Philesturnus rufusater) using a spectrogram.

36

0 1 2 3 sec

5

10

15

kH
z

Syllables

Song

Phrases

Figure 3.3: Spectrogram of a typical song of Philesturnus rufusater showingmultiple level structure.
(Excerpt of Xeno-cantoMedia ID #114331 with noise removed for better clarity). �e black line indicates
the duration of the song, which consists of 6 phrases whose durations are indicated by the red lines.

�e blue lines indicate the duration of a syllable.

3.2.3 Birds perceive sounds differently fromhuman

An average person can hear sound in the range 20Hz to 20000Hz, however, the sensitivity is

not the same over all frequencies (R. J. Dooling 2004). In particular, the human’s ear is much

more sensitive to changes of pitches at a lower frequency than at a higher frequency. For ex-

ample a difference of 100 Hz between two sounds at 200 and 300 Hz is much easier to notice

than the same difference between 10000 and 10100 Hz. �is is also obvious from the point of

Westernmusicology: the note one octave above is exactly twice the frequency, for example C1 is

130.8 Hz, C2 is 261.6 Hz, C3 is 523.2 Hz and so on. �ere are 12 semitones in an octave, and the

frequency gap between two adjacent notes are geometrically equal, about 6% (12
√
100% ≈ 6%),

but exponential in absolute value. A jump of one octave sounds similar inmagnitude nomatter

the starting node, even though in absolute frequency (Hz) the jump size differs dramatically.

�is gap gives rise to the notion of critical bandwidth response (Zwicker et al. 1957). A critical band

is the range of frequencies between a lower andhigher cut-off frequency f1 and f2withinwhich

the cochlear is unable to discern any frequency difference. �e centre frequency of the band fc

characterises how either f1 and f2 feels like to the cochlear. �is phenomenon comes from the

uneven distribution of hair cells in the cochlear (a spiral-shape organ inside the ears of verte-

brates). On the basilar membrane, hair cells close to the innermost end (the apex) are respon-

sible for detecting low frequencies. And located on the other end, the base, are cells sensitive

37

to high frequency. In humans, the first 40% of the membrane corresponds to frequencies be-

low 1000 Hz, while the remaining 60% is responsible for a much larger range (from 1000Hz to

20000Hz). Similar frequency mappings are found in the cochlears of other animals (Green-

wood 1990; Von Békésy andWever 1960), including chicken (also (Manley et al. 1987)) and barn

owl (Köppl et al. 1993).

3.3 Computationalmodelsbasedonsoundproductionandper-

ception

3.3.1 Model of sound production: the source-filtermodel

Speech and birdsongs are acoustic signals with a high level of complexity. However, the pro-

duction process is quite simple and could be described using a source–filter model (Chiba and

Kajiyama 1958). �is model was first developed to show how speech is produced in humans.

In this model, the sound begins as an excitation signal emitted by periodic opening and clos-

ing of the vocal folds (voiced speech) or air flow pushed by the lungs (unvoiced speech). At this

stage, the sound has certain fundamental frequency and accompanying harmonics. �e sound

travels through the throat where certain harmonics of the sound are suppressed or amplified

by resonating with the vocal, nasal and pharyngeal tract. �e effect of resonance can be seen

on a typical spectrogram of human speech. �e fundamental frequency in the human voice is

typically much lower than the Nyquist, thus there are many harmonics stacking on top of the

fundamental. However, some harmonics appear with much higher intensity than the other.

�ese are called formants, which characterise the voice of the speaker, and thus are widely used

for individual identification. On top of that, occasional hisses and popping sounds might be

added to the final product by actions of the tongue, lips and teeth, creates “voiced fricatives”

such as [z] and [v]. Mathematically, themodel can bewritten as the convolution of three terms:

the excitation source u[n], vocal tract v[n] and radiation r[n]:

y(n) = u(n)⊗ v(n)⊗ r(n) (3.2)

A visualisation of the model is given in figure 3.4. A similar process of sound production

38

Source

u(n)

t

t

Filter

v(n)⊗ r(n)

f

Signal

y(n)

t

Figure 3.4:�e source-filter model for sound production: signal first originates from the excitation
source - illustrated as harmonic (the upper plot) and/or random noise (the lower plot) - then goes
through an all-pole filtering process and finally exits as the sound we can hear and record. Figure is

used with permission, with modifications. Copyright Hyung-Suk Kim. Accessible at
ccrma.stanford.edu/~hskim08/lpc/lpc.pdf.

exists in birds. Existing experiments suggests that the oscillation of the lateral labia inside the

syrinx acts as the sound source (Goller and Ole N. Larsen 1997; Ole N Larsen and Goller 1999).

Nowicki (Nowicki 1987) showed conclusive evident of the vocal tract resonance in oscine birds

by putting them in Heliox (air with nitrogen replaced by helium), which alters the fundamen-

tal frequency by 3-5%. Consequently, this breaks the resonance effect, making the harmonics

that used to be suppressed displayed clearly on the spectrogram. Many birds can suppress or

enhance particular harmonics thanks to the characteristics of their vocal tract (Riede, Suthers,

et al. 2006). �ere is also evidence that the head and beak movements play a role in altering

acoustic properties of the final sound (Westneat et al. 1993). �e similarity of sound production

in birds and humans suggest that using the same source-filter model could be appropriate.

3.3.2 Model of frequency perception: non-linear filter-bank

In section §3.2.3 I pointed out that the hearingmechanism of humans and birds have a similar

structure, that is to have more sensitivity towards changes in low pitch sounds. �is suggests

that a more appropriate representation of sound should also pay more attention at the lower

end of the frequency range. However, the commonly used spectrograms generated from Dis-

crete Fourier Transform has constant frequency resolution, for example: if the input signal is

sampled at 44100Hz and the number of FFT points is 512, thewidth of all frequency binswill be
FNyquist
nbins = 44100

2
/ 512
2

= 86.13Hz. In order to represent sound with different sensitivity level i.e.

more sensitive to low frequency, there are two commonmethods used in acoustics: a) rescaling

39

the frequency map and b) produce the spectrogram using a non-linear frequency transform,

such as warped Fourier transform or wavelet transform. �e latter is far less commonly used

due to computational cost involved, whereas the first technique is much more efficient. It is

just a simple matrix multiplication after acquiring the spectrogram, which is onlyO(n logn)

complex and readily implemented in most software and even hardware. Rescale is done by

mapping the frequency to a psycho-acoustical scale, such as (commonly) Mel scale, Bark scale,

Greenwood scale, Human factor scale. �ese scales use their own unit such as mel, bark, etc

instead of Hz. A mel on a mel-scale is a unit of pitch that is designed to be perceived by lis-

tener as equal distance one from the other. �ere are more than one formula to convert linear

frequency into mels, most of themmap 1000Hz to 1000 mel as a reference point. �e formula

given by (O’Shaughnessy 2000) is arguably the most popular:

Mel(f) = 1125× ln
(
1+

f

700

)
= 2595× log10

(
1+

f

700

)
(3.3)

A Bark-scale is not logarithmic but also exhibits incremental space between units. Units corre-

sponding to frequency lower than 500 are mostly linearly spaced. It is formulated by (Zwicker

1961)

Bark(f) = 13 arctan(0.00076f) + 3.5 arctan((f/7500)2)

fNyquist0 [kHz]

Figure 3.5: Bark (top) andMel (bottom) filter bank (not normalised). In bold are two random filters
illustrating the bandwidth response

Afilterbankconsists of several triangularoverlappingfilterswithaconstantwidth inmel/bark

40

scale (exponential width in frequency) is used tomimic the cochlear’s increasing critical band-

width response. �e exact position of the centre frequencies and width of each filter varies be-

tween applications. Typically a mel filter bank has 12-20 filters, while a bark filter bank has 24

filters. Figure 3.5 illustrate the difference in bandwidth magnitude of the frequency response

of the two scales. Using filter bank also serves as a dimensionality reduction or a lossy com-

pression.

3.3.3 Model of loudness perception: Equal loudness contour

Similar to the sensation of pitch, the loudness of sound is perceived differently at different

frequencies. However, the relationship between loudness and frequency is a little more com-

plicated. �is relationship is formalised as the function of sound pressure level (SPL) required

to maintain the same loudness level, measure by the unit phon, over the range of hearing. �is

function is called the equal loudness contour, with five contours at 20,40,60,80 and 100 phon il-

lustrated in Figure 3.6. �ese curves are acquired empirically by averaging the equal-loudness

perception of the young participantswithout significant hearing impairment. �epoint of ref-

erence (1 phon) is the SPL of 0dB at 1KHz and its contour is the absolute threshold of hearing.

�e sudden “dips” (the red segments) of all contours in the range 2-5KHz correspond to the

frequency range where human ears are most sensitive to.

20 phon

40 phon

60 phon

80 phon

100 phon

10Hz 100Hz 1kHz 2kHz 5kHz 10kHz
Frequency

20

40

60

80

100

120

So
un
d
Pr
es
su
re
Le
ve
l(
dB

SP
L)

Figure 3.6: Equal loudness contours according to ISO 226:2003

�e equal loudness contours are widely used as a preprocessing step, for example in calcu-

lating perceptual linear prediction (Hermansky 1990) or specific loudness (Pampalk et al. 2002;

Timoney et al. 2004). �e contour values are multiplied with the intensity of the sound at the

41

corresponding frequency to compensate for the final loudness perceived by the human ear. �e

use of this technique for animals, particularly birds, is not sufficiently investigated. (R. J. Dool-

ing et al. 1978)measured the perception of loudness in four species of birds and found that they

in general have similar curve-like response as human’s, but later concluded that a generalisa-

tion of such equal-loudness contours for all species is not practical (R. Dooling et al. 2005).

3.4 Conclusions

Birds and humans sharemany acoustics capabilities - hence human canwhistle birdsongs and

parrots can mimic human voices. However, the mechanisms of sound production are quite

different, so as the way sounds are perceived. It is not clear how much these differences can

affect theway birdsong analysis is carried out using techniques and tools that are developed for

speech. �is is one of the reasons Koe does not emphasise on automated processes. In the next

chapter, I discuss the science and implementation of syllable segmentation. �is is one part of

the workflow that is well-tuned for manual processing and also has built-in automation.

42

CHAPTER 4

SYLLABLE SEGMENTATION

4.1 Introduction

In this thesis, syllable segmentation involves identifying the starts and ends of song syllables

in time. �is process is also called “endpoint detection”. Correctly identifying syllable end-

points is not trivial. Several factors that complicate this process are often encountered in bird-

song recording but can be a challenge to mitigate. �ese factors include: static noise coming

from the recorder, ambient noise from the environment such as running water, wind or the

rustling sound of vegetation, reverberation1, and overlapping vocalisation of other nearby an-

imals. A substantial proportion of birdsong analysis still relies on manual segmentation even

though the authors typically indicate that automatic segmentation is their final aim, for exam-

ple (K. Adi et al. 2010; Z. Chen andMaher 2006; Fox 2008; Franzen and Gu 2003; Chang Hsing

Lee, Han, et al. 2008; Vallejo et al. 2007). Automatic methods for syllable segmentation exist

but new development in this field has stalled since 2009. �is may be due to the emphasis on

species recognition applications in computational birdsong research, which does not require

individual syllables to be segmented precisely, or at all. �e dominance of segmentation-free

approach can be observed in many recent works on species recognition such as in solutions

submitted to the annual BirdCLEF competition, see Kahl et al. (2019) for a summary. However,

while segmentation may not be necessary for machine-learning based species recognition, it

1signal energy extending in time pass the point the syllable has stopped being produced, often due to the
reflection of the original signal when it contacts various surfaces

43

remains essential for fine-scale analysis of dialects and individual variation. �e continued im-

portance of segmentation is evidenced by recent methods papers, which introduce segmenta-

tion algorithms (using simple thresholdingmethods), for example (Barmatz et al. 2019; Zhao et

al. 2017, use signal energy), (Bhatia et al. 2019, usemultual information). Nevertheless, a num-

ber of algorithms have been developed throughout the years. In this chapter, I first explain how

manual syllable segmentation is done in Koe. �en the discussion of automated segmentation

algorithms follows with an overview of existing methods developed specific to birdsongs, in-

cludingmy experimental neural networkmodels. Finally, these algorithms are evaluated using

selected bellbird songs against the ground-truth segmentation that was done manually using

the manual process in Koe.

4.2 Manual segmentation inKoe

In Koe there are two types of segmentations: from a long recording (e.g. a few hours) into in-

dividual songs (several seconds to a few minutes, depending on the species), and from a song

into individual syllables. �is section discusses the latter.

Manual segmentation involves the user selecting the start and end points of each syllable on

a spectrogram, then committing the selections to the database. Saved selections become avail-

able in other program views. �e user can adjust playback speed, spectrogram contrast and

time-axis zoom. For any songs already segmented into units in other software, start/endpoints

can be imported as a csv file. Segmentation data created outside Koe can also be uploaded di-

rectly to the database in Unit table page. �e user can freely re-adjust existing segmentation

and program viewswill update dynamically. Koe stores only individual songs on the hard drive.

�e start and end points of each syllable are stored on the database with reference to the song

they come from. �is way not only are storage requirements minimal, but when a syllable is

deleted or has its endpoints changed, the operation will be instantaneous. Figure 4.1 shows

this process in action.

44

Figure 4.1: Koe’s syllable segmentation view showing a song with manually segmented syllables. �e
highlighted syllable is newly segmented and is in the adjustment process. �e user can drag the

handles on both sides to change where it begins and ends.

4.3 Relatedwork for automatic segmentation in birdsongs

Syllables in birdsong are typically defined as continuous sounds separated from each other by

a brief silent interval, which is normally found empirically, mostly in the range 50 to 300 ms

(Ondracek and Hahnloser 2013). �is is different from human speech, where a syllable usu-

ally refers to a combination of a single vowel sound and the immediately associated consonant

sound; successive speech syllables need not be separated by a silent interval (Wilbrecht and

Nottebohm 2003). In speech, isolated utterances (words) in clearly articulated speech (each

word is followed by an intentional pause) can be defined similarly to birdsong syllables as hav-

ing sufficiently long silent intervals in between. �e RS algorithm (Rabiner and Sambur 1974)

is one of the first algorithms developed for the purpose of segmenting articulated words. It

finds regions of continuous high value (above certain threshold) on the amplitude envelope to

mark the start and end points of the voice parts and then use zero-crossing rate for fine tun-

ing. Adaptation of this method to birdsong can still be found in recent works, using constant

threshold such as in (Barmatz et al. 2019; Große Ruse et al. 2016; Jinnai et al. 2012; Lakshmi-

narayanan et al. 2009; Papadopoulos et al. 2015; Qian et al. 2015; Ranjard andRoss 2008), or us-

45

ing an adaptive threshold such as in (Somervuo, AkiHarma, and Seppo Fagerlund 2006;Wang

et al. 2013). �is approach produces an acceptable result given the recording was acquired in

relatively noise-free environment and all utterances have a similar amplitude.

An algorithm proposed by Harma (Aki Harma 2003) has become widely used to segment

birdsong syllables. Similar to the RS algorithm and derivatives, it operates on the signal en-

ergy. �emain difference is that the energy is analysed in time-frequency domain to find peak

energy ridges in the spectrogram. Each syllable is identified as the duration of high energy

centered around a local maximum of the energy ridges. �e energy threshold is relative to the

energy of the local maximum, hence it is adaptive by definition. �ere are several advantages

of this method compared to RS derivatives: 1) RS’s signal envelope does not distinguish voiced

signal (with energy concentrated at a narrow range of frequency bins) with high energy noise

(having energy distributed over a broad range of frequency) 2) an adaptive threshold calculated

based on the energy of the local maximum is simple but effective in detecting faint syllables.

In addition, Harma’smethod requires low computational power (see Section §4.6.3). �ese ad-

vantages explains its popularity in birdsong applications. It is used in its original formwithout

modification such as in (Koops et al. 2014; Koops et al. 2015; Chang Hsing Lee, Y. K. Lee, et al.

2006)) orwith small adjustments of the stopping criteria (ChouandKo2011; ChouandLiu2009;

Chou, Liu, and B. Cai 2008). However, due to noise insensitivity, it often fails to detect broad-

band “noisy” syllables where the energy is not concentrated in a discrete set of frequencies, but

is spread cross a frequency range.

An alternative approach to syllable segmentation in time-frequency domain was proposed

where image processing methods were employed on the spectrogram to find regions of inter-

est - contiguous blobs of high pixel values. �e first algorithm proposed by Fodor (Fodor 2013)

follows the following steps: 1) binary threshold spectrogram at 90th percentile; 2) apply blob

detection on the acquired binary mask to find regions of interest. �ese are contiguous blobs

of “on” pixelswhich correspond to concentration of energy. Lasseck (Lasseck 2013) significantly

improved the method by employing an adaptive binary thresholding method which he coined

“median clipping”. Blob detectionwithmedian clipping - or the “Lasseck’smethod” is effective

in picking out the signal that stands out in comparisonwith the noise profile at each particular

time point and frequency band. Unlike Harma’s method, Lasseck’s method can detect noisy

46

syllables equally well as it does tonal syllables. However because the signals are found as two

dimensional subsections of the spectrogram image (localised in both time and frequency), sig-

nalswith clear harmonic stacks are segmented into several blobs because each harmonic forms

a separate region of high intensity. I proposed an algorithm to solve this problem by utilis-

ing the nature of harmonics being integer multiple of the fundamental frequency (Fukuzawa,

Marsland, et al. 2017). �eproposed algorithm is able tomergeharmonic parts of a syllable into

one and can even separate overlapping signals (e.g. from a different bird), however it requires

a high level of signal to noise ratio.

Several machine learning methods for segmenting syllables have been proposed. Similar

ideas to Lasseck’s method can be found in (Kaewtip, Tan, Alwan, et al. 2013; Neal et al. 2011)

where a supervised machine learning method (Random Forest) was used to perform binary

classification of spectrogram pixels as “belong to” or “not belong to” a syllable. However, there

are several problemswith this approach. First, it is farmoredifficult to create a trainingdataset

for pixel-level classification, as opposed to simple endpoints of the syllables. Second, multi-

harmonic syllables can end up being fragmented and the process of putting them back as one

syllable isn’t trivial, as pointed out in my paper (Fukuzawa, Marsland, et al. 2017). Taking a

different approach, Kaewtip, Tan, Taylor, et al. (2015) isolated spectrogram images of syllables

as templates and used Dynamic Time Warping to find matching segments on the input spec-

trogram. �e results were than refined using a trained Support Vector Machine. �e authors

only used 4 templates so it is questionable that this method can work in case of hundreds of

different syllable kinds. DTW is also prohibitively expensive to run in such cases.

Machine learningmethods for endpoint detections have also been proposed. Ranjard (2009)

uses a HiddenMarkovModel trained on several acoustic features such as auto-correlation and

spectral rolloff to classify each spectrogram frame as “noise” or “syllable”. Inspired by this al-

gorithm, my approach in this thesis is to use even more sophisticated machine learning algo-

rithms and less emphasis onmanually finding an optimal set of features.

In the coming sections, I detail the implementation of two existing syllable segmentation

methods, as well as my own algorithms which utilise complex machine learning architecture.

I chose the Harma method - due to its popularity - to represent energy-threshold-based one-

dimensional endpoint detection. �eLasseckmethod is chosen to represent image-processing

47

basedsegmentation in twodimension. I implementedanalgorithmsimilar toRanjard’smethod

but using amulti-layer neural network and raw spectrogram input to represent a frame-based

machine-learning approach. Finally, inspired by the success of sequence-to-sequence auto-

encoders in applications of speech and time series (Deng et al. 2010; Serban et al. 2017; Yeh et

al. 2019), I evaluated amachine-learning segmentationmethod using a sequence-to-sequence

auto-encoder.

4.4 Procedural algorithms

4.4.1 Endpoint detection in time using energy threshold: Harmamethod

�e original algorithm proposed by Harma (Aki Harma 2003) is as follow:

1. Set the stopping thresholdΘ = 30dB.

2. Convert birdsongaudio to spectrogramusingFFT.�is spectrogramis a twodimensional

matrix denoted S(f, t)where f is frequency bin index and t is time frame index.

3. Repeat steps 4-9 until finish

4. Find fn and tn, such that S(fn, tn) is the maximum value in the spectrogram. �is posi-

tion represents the maximum amplitude position ofnth sinusoidal syllable.

5. Store amplitudeA = 20× log10
(
S(fn, tn

)
(dB)

6. ifA < Θ stop

7. Starting fromS(fn, tn,), trace themaximumpeakofS(f, t) (a = 10×log10
(
max

(
S(f, t)

))
)

for t > t0 and for t < t0 until a < A−Θ

8. Store the syllable endpoints as [tb, te] where tb is the begin time corresponding to the t

found in step 7 where t < t0, and vice verse for the end time te.

9. Set S(f, tb → te) = 0 to delete the area where the current syllable as been found.

48

Algorithm 1:Harma’s method
Data: Spectrogram S(f, t)

Result: L: A list of syllable endpoints

L← ∅;
Θ← 30 (db);

A← 20× log10
(
max(S(f, t))

)
;

while a ≥ θ do

t0 ← argmax(S(f, t));

tb ← t0 − 1;

tb ← t0 + 1;

whilemax(S(f, tb)) ≥ A−Θ do

tb ← tb − 1;

end

whilemax(S(f, te)) ≥ A−Θ do

te ← te + 1;

end

L← L ∪ [tb, te];

S(f, tb → te)← 0; f = 0..Nyquist;

A← 20× log10
(
max(S(f, t))

)
;

end

In practice, since only the amplitude of the peak frequency of each frame is used, this al-

gorithm is operating in one dimension by extracting from the spectrogram the dominant fre-

quency ridge and use it as input, see Figure 4.2. �is algorithm is often used as is or with slight

modifications of the global and local threshold values. One problem with this approach is that

decibel is not an absolute scale and can vary depending on the FFT algorithm, so these values

are somewhat arbitrary. In my implementation, first the spectrogram is normalised to have

power spectral density values in range [0− 1]. �e global stopping thresholdΘ is set at 0.5 and

the local stopping threshold is θ = at0 − 0.2

49

Figure 4.2: Top: the spectral peak value curve that Harmamethod uses to find syllables. Bottom:
spectrogram of a bellbird songs where red segments denote ground-truth syllables and green
segments denote results from the algorithm. Although Harmamethod is written to take two

dimensional time-frequency spectrogram as input, in effect it is operating in one dimensional input

4.4.2 Boundarydetectionintimeandfrequencyusingimageprocessing: Lasseck

method

�e original algorithm proposed by Lasseck, called “Median Clipping” is as follows:

1. Convert birdsong audio to spectrogram.

2. Remove spectrogram rows representing the relevant frequency below 170 or above 10000

Hz.

3. Gaussian smoothing

4. Binary thresholding according to Equation 4.1

Sr,c > 3×max(median(Sr),median(Sc)) (4.1)

Where Sr,c denotes a pixel value in the spectrogram at row r and column c that is being

thresholded, Sr is a row of spectrogram pixel values at row r, Sc is a column of spectro-

gram pixel values at column c

50

5. Morphological removal of spurious pixels and small objects

6. Blob detection (after filling holes)

�e novelty of Median Clipping is that it uses the median value of a row or a column as a

pseudo-adaptive threshold for each pixel, so that the algorithm can be very fast yet effective

in picking out the signal that stands out in comparison with the noise profile at each partic-

ular time point and frequency band. �e blobs segmented out using this method have been

used directly as templates to perform template matching on audio recordings with unknown

species to detectwhat species are present in the recordings, which proved to be quite a success-

ful approach, winning a number of competitions of recognising bird species in audio record-

ings (MLSP, NISP4B, BirdCLEF 2013, 2014, 2015).

�is method works well at segmenting out pockets of high energy in the time-frequency

space (generally syllables), however, it is also prone to segmenting out blobs that correspond

to nothing but noise and breaking whole syllables into multiple blobs. It also does not deal

with harmonic syllables and segments each harmonic separately, frequently into smaller and

smaller blobs for higher harmonics as these do not carry as much power as the fundamen-

tal. Figure 4.3 (bottom figure) shows one typical case of this scenario. We found this method

good at dealing with narrow-band noise that frequently presents in the recordings, but does

not segment syllables correctly, either breaking up one syllable into multiple blobs or linking

multiple syllables into a single blob. �is latter result is mostly due to reverberations present

in the recordings that blur the syllables out along the time axis at the end of vocalisation and

effectively creating an overlap with the next syllable.

In order to produce comparable resultswithHarmaandmyalgorithmswhich segment sylla-

bles in time only, it is necessary to detect the actual syllable endpoints from separate harmonic

blobs. In my implementation of Lasseck’s method, a simple voting scheme applies to merge

harmonic blobs together. Details as following:

1. From detected signal blobs, construct a binary mask of the spectrogram (having F rows

and T columns) with blob content given the value of 1 and background gets the value of

0. Figure 4.3 (middle figure) shows an example of this binary mask.

2. Merge blobs that are overlapping in time (e.g. harmonics of the same syllable) by sum-

ming the columns. �e result is a one dimensional vector with length T . �e top figure

51

Figure 4.3: Top: accumulated binary mask curve. Middle: binary mask after median clipping. Bottom:
signal blobs found using blob detection where red segments denote ground-truth syllables and green

segments denote results from the algorithm.

of Fig. 4.3 is the result of summing the binary mask given in the middle figure.

3. �e syllables can now be isolated by finding the points where column sums transition

from zero to non zero and vice verse.

52

4.5 Heuristic approaches

Recent development in species recognition is heavily machine-learning based, however ma-

chine learningmethods specifically for segmenting birdsong syllables (animal vocalisation syl-

lables ingeneral) are rare. Pixel-level supervised segmentation canbe found inNeal et al. (2011),

Kaewtip, Tan, Alwan, et al. (2013) and frame-level segmentationusingmachine learning is doc-

umented in Ranjard (2009). Overall, the classifiers of these machine learning methods have

simple structure. I implemented a generic feed-forward neural network and achieved high ac-

curacy. Finally to tackle the problem of variable length, a more complicated recurrent neural

network was also implemented and produced statistically better accuracy. Both neural net-

works methods achieve higher accuracy than Harma and Lasseck methods, however they are

slower. �e detailed performance comparisons between thesemethods are provided in Section

§4.6.

�e neural network approach consists of two phases: the training phase and the application

phase. In the training phase, the model is given a set of input and correct output. �e input is

typically a one-dimensional array, while the output can be a singular value or an array of values.

�e model consists of several connected layers of randomly initialised weights that simply

multiplies with the input and the results are used as input for the next layer. �e initial output

of the model is completely random. �e correct output is then used to give feedback to the

layers in a process called gradient descent, and the process repeats, each time the weights are

slightly adjusted and the output slightly approaches the correct output.

�e basic structure of both neural network based methods are as following: the input is k-

consecutive spectrogramframes stacked intoonedimension. �eoutput is ak-dimensional bi-

nary indicatorwhere 1 corresponds to syllable-positive framesand0 to syllable-negative frames.

�e value of k is closely related to the average gap between syllables: if it is too small, the neu-

ral network is prone to random short bursts of noise being recognised as positive. Including

more frames in the input provides context to the classifier and should increase accuracy rates,

but risks overlooking small gaps that nonetheless genuinely separate syllables. Section §4.5.1

explains in details how such neural network can be implemented given a reasonable value of k,

and section §4.5.2 shows how a Recurrent Neural Network (RNN) structure can overcome this

issue by not fixing the value of k altogether.

53

4.5.1 Feed-forwardNeural Networkwith fixed size input

As the each layer of a neural network has fixed number of neurons, a traditional feed-forward

neuralnetwork (also calledMulti-LayerPerceptron) requires that the inputhasfixedsize,whereas

in reality syllables vary in length. �us, the spectrogram needs to be cascaded into equal-sized

chunks by concatenating k consecutive frames into one input vector in the followingmanner:

1. At the first frame f1, place a window of k frames to encompass all frames in the range f1

to fk.

2. Stack all frames in this window into a one-dimensional vector.

3. �e expected outcome is 1 if the window contains a syllable frame, or 0 if it contains only

non-syllable frames.

4. To train, fetch this vector and the expected outcome to the neural network.

5. To predict, fetch this vector to the trained neural network and collect the outcome, which

represents the probability that the input contains a syllable frame.

6. Move to the next frame f2 and repeat until frame fl−k+1 where l is the total number of

frames in the original audio segment.

Figure 4.4 illustrate this processwherek = 2. �ere is an inherent issuewith this neural net-

workmodel, which can be observed quite clearly from the illustration. �e cascaded vectors are

disconnected from each other as they are independently trained. �e order in which they are

used to train the model does not matter. Whereas, to determine whether a frame is a syllable

frame or not depends significantly on the adjacent frames. A high value of k lessens this dis-

connectedness by providing more context, but significantly increases the size of the network.

In the next section, Section §4.5.2 I discuss how a recurrent neural network can overcome this

issue.

4.5.2 Recurrent Neural Networkwith variable size input

An RNN is structurally similar to an MLP, except that the neural values of the hidden layer are

circled back to itself in the next training iteration, hence "recurrent". �e hidden layer at each

training iteration has information of all the previous samples that it has seen, thus the order

54

in which the training takes place reflects the temporal arrangement of the input frames, pro-

vided that they are fetched into the network in the same order they appear. �is way, the input

of a recurrent neural network is effectively all the previous frames combined with no size lim-

itation, however it should be obvious that historical frames have diminishing contribution to

the outcome of the current iteration. �is is intuitively similar to how the perception of sound

works in humans and animals.

One caveat of this approach is that there is nothing that comes prior to the first frame, for

which thehidden layer values canbe calculated. �usa special frame, calledSTART token, needs

to be predefined, and will be the first frame to go into the neural network. �e START token

is a vector of size equal to that of the hidden layer, with values chosen such that it cannot be

mistaken for a normal frame. For example, if the calculated neural values of the hidden layer

must be positive, or must be within range [0 − 1], then a START token with all negative values

will be sufficiently distinctive. With the correct settings, the RNN can then be trained and used

in the followingmanner, which is also illustrated in Figure 4.5

1. Initialise the neural network, typically by randomising the neurons’ values.

2. Define the START token.

3. �e expected output of the network at each frame fi is the prediction that the next frame

is a syllabe frame (1) or not (0)

4. At the first frame f1, fetch the frame values to the input layer. Fetch the outcome of both

the input layer and the START token to the hidden layer. Keep a copy of the outcome of

the hidden layer.

5. Do the same for subsequent frames fi, except that instead of the START token, use the

values of the hidden layer at the previous iteration.

6. To train, usegradientdescent tobackpropagate theerror (|Expectedoutput−actualoutput|)

to the previous layer and adjust their neuron weights.

7. To predict, collect the outcome, which represents the probability that the input frame is

a syllable frame.

55

4.6 Data and evaluation

4.6.1 Data

Ground truth of the segmentation was syllable endpoints extracted from manual annotation

using the program Luscinia, and then refined carefully by hand inKoe by several biologists. Only

audio data from fully segmented audio was included. �ese are songs or calls of other birds

in the background that the biologists wished not to include to avoid contaminating data for

sequence analysis later.

Harma and Lasseckmethods require no training. To train amachine learning algorithm, 23

audio files with high quality segmentation were selected. �ese files are relatively short, and

contains no additional vocalisations than the syllables that had been segmented by hand. �ese

files are listed in Table 4.1.

4.6.2 Evaluation

�e segmentation of syllables from bird songs is similar to that of phonemes/isolated words in

running human speech. �us, we can borrow some evaluation methods for speech segmenta-

tion to evaluate syllable segmentation results. Manual segmentation by trained experts is used

as the baseline for the evaluation. A syllable is defined as the segment within two boundaries

in time. A boundary is deemed “correct” if it falls within the vicinity of one baseline bound-

ary. Several statistical measures can be derived directly from the comparison between base-

line boundaries and segmented boundaries, including Ngt: the number of boundaries in the

ground-truth;Nf: the number of detected boundaries andNhit: the number of boundaries cor-

rectly detected. A 50% tolerance applies to judge if the boundaries are correct, i.e. if the correct

segment and predicted segment overlaps more than 50% that counts as a hit. If one correct

segment overlaps with two or more predicted segments more than 50% both, that counts as

one hit. Many scoring schemes have been proposed to evaluate the segmentation result. Some

56

Table 4.1: Files used to train MLP and RNN.�ese files come from Koe’s database Bellbird_TMI. Syllable
endpoints are manually marked by Dr. WesleyWebb. Columns l(f) shows the total length of the file in

millisecond. Columnsns shows the number of syllables. Column
∑ns

1 l(s) shows to cumulative
lengths of all syllables.

File name l(f) ns
∑ns

1 l(s)

TMI_2014_03_20_MMR126_01_F.VG. 5329 13 2316
TMI_2015_03_24_MMR291_02_F.G.HlB-BM 6651 24 3022
TMI_2015_10_01_MMR049_05_F.EX.HY-WM 6278 31 3262
TMI_2014_02_25_MMR067_01_M.OK.BPu-WM 5047 17 2943
TMI_2013_03_11_MMR067_01_M.OK.HPu-OM 3495 10 1495
TMI_2013_03_12_MMR080_02_M.OK.HPu-OM 4639 15 1496
TMI_2015_09_16_MMR021_03_M.OK.HPu-OM 5808 6 1526
TMI_2015_10_19_MMR073_01_M.G.HPu-OM 5465 6 1337
TMI_2014_03_19_MMR085_01_M.OK.OW-GyM 5213 6 1619
TMI_2015_10_19_MMR074_04_M.OK.RBr-lBM 6610 7 1817
TMI_2013_04_09_MMR137_01_M.OK.YBk-M 3205 13 1477
TMI_2013_05_01_MMR106_01_M.G.G-OM 5258 5 1286
TMI_2013_04_01_MMR046_01_F.G.YB-GM.(A) 5988 18 3226
TMI_2014_12_19_MMR087_01_M.G.HBk-dGM.(A) 7011 8 2142
TMI_2014_12_31_MMR157_05_M.G.HB-WM.(A) 5350 6 1592
TMI_2015_02_15_MMR058_01_M.G.RBr-lBM.(A) 7011 6 1744
TMI_2015_10_13_CHJ025_03_M.G.RBr-lBM.(A) 7000 16 2934
TMI_2015_01_04_MMR171_01_F.OK.HR-RM.(A) 5006 25 2127
TMI_2015_12_14_MMR159_03_F.G.lBO-BM.(A) 6072 15 840
TMI_2014_12_30_MMR137_01_F.OK.RBr-BM.(A) 6994 20 923
TMI_2014_12_21_MMR107_01_F.OK.O-lG(Obr-lGM) 6358 8 369
TMI_2014_11_02_MMR026_02_F.OK.PpB-lBM.(HY) 5121 18 1370
TMI_2014_11_02_MMR026_03_F.OK.PpB-lBM.(HY) 5041 20 1510
Total 129950 313 42373

of which are listed below:
Hit rate (HR) = Nhit/Ngt

Precision (P) = Nhit/Nf

Recall (R) = Nhit/Ngt

F1 score (F) = 2PR/(P + R)

Where the closer the F1 score is to 1 andR-value is to 0, themore similar the segmentation result

is to the ground-truth.

57

4.6.3 Results

Whisker plots in Figures 4.6a, 4.6b, 4.6c show the average and two standard deviations of F1,

Precision and Recall scores respectively of 5 different segmentation methods. MLP and RNN

are clearly significantly better than Harma, Lasseck and median-clipped Harma. T-test also

shows that RNNhas higher F1 score andprecision, however both have statistically similar recall

rates. �e reason for this slightly better performance of RNN can be explained by RNN being

inherently aware of the temporal relationship between frames, whereas MLP treats all frames

with equal importance.

As stated in Chaper 1, Koe is a tool for high-precision analysis, the speed and computational

complexity are of lesser importance. However, future development of Koewill include making

automatic segmentation accessible to the users, where the algorithms will be running in real

time and thus speed will becomemore important. In order to assess the speed performance of

these algorithm, I recorded their elapsed timeneeded to run over each audio file and calculated

the average time it took to process one second of the input file. We can see that Harmamethod

was extremely fast as expected (on average 0.00016 second to process one second of audio),

and recurrent neural networkwas the slowest. Lasseckmethod andLasseck’s enhancedHarma

method were on par at second slowest. RNN is unsurprisingly the slowest because each frame

must be processed in sequence. MLP on the other hand, is quite fast despite having similar

structure and load time requirements as RNN.�is is because frames are processed indepen-

dently in anMLP and thus with batch processing, they can be processed simultaneously.

4.7 Conclusion

�eneural network approach appeared to bemore effective for the segmentation of bird songs

than other procedural methods. In particular, recurrent neural networks appeared to outper-

form traditional MLP and this can be attributed to their ability to model the dynamics of the

temporal structures of the signal. However, the RNN approach is heavily penalised in terms

of speed due to its complexity, while MLP is significantly faster and only underperforms RNN

slightly. Harma segmentation is unmatched in speed, being several orders ofmagnitude faster

58

than all other methods, in exchange for significantly worse results. However, all of them were

reasonably fast with the slowest (RNN) still clocking at 70 ms per second of audio file. Where

computational power is severely restricted, for example, in remote/handheld devices, Harma

might still be useful. In most computers nowadays however, the neural network is obviously a

wiser choice.

Comparison aside, it is important to note that none of these algorithmsoutperformsmanual

segmentation, or even come close to that. For high precision analyses, which is the aim of

Koe, manual segmentation is still irreplaceable. �e precision of segmentation is important for

the next step of the workflow: feature extraction, as many features are end-point sensitive. In

Chapter 5 that follows, I present features that are extractable using Koe, including those most

commonly used in acoustics as well as useful features that were previously only implemented

by proprietary software until the introduction of Koe.

59

0 00111111d)

c)

b)

a)

Figure 4.4: A simplified process of syllable end-point
detection using multi-layer perceptron with fixed size input.
a) Spectrographic representation of a syllable, with silent

gaps at both ends.
b) Concatenate k frames into one vector. Here, k = 2.
c) Each vector is fed into the neural network. �e neural

network is visualised repeatedly for each input, but keep in
mind that there’s only one neural network. For simplicity, the

neural network has three layers: X→X→X circles
represent the input, hidden and output layer, respectively.
d)�e output of each vector indicates whether the original
input is syllable-positive (1) or syllable-negative (0). Notice
that the number of output is k− 1 less than the number of
original frames, due to concatenation. �e output of the first
k− 1 frames is defined typically to be 0, as a bird song
typically starts with a brief silence before the first syllable
starts. Here, the number 0 in red indicates that the first
frame in this example is defined to be syllable-negative.
Syllables endpoints coincide with the begin and end of a

string of positive output.

60

0 00111111c)

b)

a)

Figure 4.5: A simplified process of syllable end-point
detection using recurrent neural network with variable size

input.
a) Spectrographic representation of a syllable, with silent

gaps at both ends.
b) Each frame is fetched into the neural network. �e neural
network is visualised repeatedly for each input, but keep in
mind that there’s only one neural network. For simplicity, the

neural network has three layers: I →H→O circles
represent the input, hidden and output layer, respectively.
However, the values of the hidden layer are also used as the
input to itself in the next frame. For the first frame, a

predefined START token S is used in place of the previous
hidden layer values.

c)�e output at index i indicates whether the next frame fi+1
is a syllable frame (1) or not (0).

Syllables endpoints coincide with the begin and end of a
string of positive output.

61

mlp rnn hma lsk l+h
Segmentation method

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

(a) F1 scores

mlp rnn hma lsk l+h
Segmentation method

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 sc
or

e

(b) Precision

mlp rnn hma lsk l+h
Segmentation method

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll
sc

or
e

(c)Recall (d)Average time elapsed

Figure 4.6:Mean and two standard deviations of specific scores of different segmentation algorithms

62

CHAPTER 5

FEATURE REPRESENTATION

5.1 Introduction

Birdsong audio signals are stored on a digital device as a series of air pressure values sampled

at equal intervals which can then be used to reproduced the original sound. �is series of air

pressure values in its raw form is often ill-suited to study complex vocalisation due to its inabil-

ity to present properties of sounds in a meaningful way. In order to be used in any computer

algorithm, birdsong syllablesmust first be represented in a feature space that facilitatesmath-

ematics operations. An ideal feature representation does not only present sounds in a lower

dimensional space but also captures only relevant acoustic information while being invariant

to background noise.

Figure 5.1 illustrates the general process of feature extraction. �e majority of acoustic fea-

tures are frame-based: a fixed-length window is progressively slid across the original signal,

capturing a segment of sound that is short enough to assume that it is stationary; then one

value (scalar or vector) is calculated from that segment. A long signal has more frames than

a short signal, making their feature vectors have different lengths. Birdsong syllables almost

always have different durations, so in general their feature vectors have variable length. �is

complicates the comparison between syllables asmany algorithms (for example: Euclidean and

other Lp metrics, most neural network architectures, most dimensionality reduction meth-

ods) require the input to be of the same size. It is therefore necessary to standardise feature

length before they can be used in further analysis. Common standardisationmethods include:

63

extracting statistics such as minimum, maximum, median, standard deviation; resampling

sequences; and using edit distance algorithms such as DTW to calculate pair-wise similarity

values.

1

2

3

1

2

3

Extract feature
Standardise

LengthOriginal signals

Classifier

Figure 5.1:Workflow of various acoustic feature extraction from bird song

Acoustic features are very diverse, and in many studies new features catering to specific

species andenvironmentareproposedspontaneously. In this chapter, Ifirstpresent anoverview

of features that are frequently used in birdsong analysis. �is is followed by standardisation

methods. Finally, I demonstrate how feature extraction and standardisation are performed

and implemented inKoe.

5.2 Acoustic features

Most acoustics features used in birdsong analysis are borrowed from speech processing. A

large number of acoustic features have been proposed over time: early features were proposed

to reflect human-perception of sound such as “brightness”, “highness”, “noisiness”, “flatness”;

latermore complex and abstract features such asMFCC andWavelet coefficients becamemore

mainstream.

Mitrovic et. al.(Mitrović et al. 2010) studying content-based audio retrieval have come up

with a novel taxonomy of acoustic features based on the origin and methods to extract them.

By organising acoustic features into meaningful groups, their taxonomy facilitates the selec-

tion of features for particular tasks. Mitrovic et. al.’s taxonomy includes several domains, in

which time (temporal), frequency (spectral) and quefrency (cepstral) are most used in speech

processing and animal acoustics. Other domains such as modulation frequency, phase and

eigen domains contain features that aremostly useful formusic analysis and are thus excluded

64

frommy research. I arranged their taxonomy into two groups: descriptive and abstract.

5.2.1 Descriptive features

Descriptive features include time domain and the perceptual subdomain of the frequency do-

main. �emajority of these features are one dimensional and named to reflect human percep-

tion of sound. �ese features are listed in Figure 5.2.

D
om
ai
n

Su
b-

do
m
ai
n

Family Features

Ti
m
e

Zero
crossing
(ZC)

ZC Rate; Linear Prediction ZC Ratio; ZC Peak
Amplitude (ZCPA); Pitch Synchronous ZCPA

Amplitude MPEG-7 Audio Waveform de-
scriptors; Amplitude descriptors

Power
Short-Time Energy; Loudness; MPEG-7 Tem-
poral Centroid; MPEG-7 Log Attack Time

Fr
eq
ue
nc
y

Pe
rc
ep
tu
al

Brightness Spectral Centroid; Sharpness; Spectral Centre

Tonality
Bandwidth; Spectral Spread; Spactral Dispersion;
Spectral Rolloff Point; Spectral Flatness Measure;

Tonality Coefficients; Spectral Crest Factor; Entropy;

Loudness Specific Loudness Sensation; Integral Loudness

Pitch Fundamental Frequency; Perceptual Pitch

Harmonicity

Harmonic Ratio; Upper Limit of harmonicity; Harmonic
Coefficient; Inharmonicity; Harmonicity Prominence;
Harmonic Concentration; Harmonic Energy Entropy;
Harmonic Derivative; MPEG-7 harmonicity descriptors

Figure 5.2: Taxonomy of descriptive acoustic features.

5.2.1.1 Time domain features

�e time domain represents changes in air pressure when the sound reaches a microphone,

which is measured by voltage value. Features in this category are necessarily extracted directly

from the oscillogramwithout any transformation. �us, they tend to have excellent time reso-

lution and low computational cost. Common time domain features include:

65

• Zero-Crossing features: the main feature is Zero Crossing Rate (ZCR) which measures

howmany times the voltage values change sign, formally defined as the number of zero

crossings within one second, and is an efficient way to approximate the dominant fre-

quency (Kedem1986). Related features includeLinearPredictionZeroCrossingRatio (LPZCR),

Zero Crossing Peak Amplitude (ZCPA) was proposed to extract frequency information, in-

cluding intensities from the zero crossings without Fourier transform.

• Amplitude: is the absolute value of the signal’s waveform

• Power: includes Short-time energy (STE) defined as themean square of the amplitude over

a period of time andVolume or Loudness defined as the rootmean square of the amplitude

over a period of time. Log Attack Time (LAT) is the logarithm of time duration from the

beginning of the sound to the point where the envelope reaches its first maximum

5.2.1.2 Frequency domain perceptual features

Frequency domain has the largest group of acoustic features, which can be further divided into

two subdomains: physical (discussed later in Section §5.2.2) and the perceptual. Perceptual

features are derived from human’s perceptual of sound, thus they are often expressed in lan-

guage terms that are intuitive to understand. All features in this group are extracted from the

magnitude part of the spectrum.

• Brightness refers to the tilt of power towards higher frequencies, i.e. a sound becomes

brighter when more energy is concentrated in high frequencies. Brightness features

characterise the distribution of power over the frequency spectrum. �ese features in-

clude: SpectralCentroid is the centre of gravity of the spectrum, calculated as theweighted

mean of the frequencies using their normalised magnitude as weights; Spectral Centre is

the frequency where half of the energy in the magnitude spectrum is above and half is

below. It is one instance of Spectral Rolloff Point, which is defined as the N% percentile of

the power spectrum. In practice, the value ofN is usually at the higher end (85, 95, etc).

• Tonality: is ameasureof relativepitch strengthof theperceivedpitchof a sound. Tonality

features include: Spectral Flatness Measure (SFM), also known asWiener entropy is a mea-

sure of the noisiness of the spectrum,where higher values correspond to amore uniform

66

distribution of power over all frequencies; Spectral Crest Factor (SCF) bears the opposite

meaning to SFM, in other words it measures how peaky the spectrum is. A noisy spec-

trum has a low value of SCF compare to a clear tonal spectrum. It is calculated as the

ratio of the peak over the mean frequency value. Similar to Wiener entropy are Shan-

non entropy, Renyi entropy. Bandwidth (BW), a.k.a. spectral spread is usually defined as the

magnitude-weighted average of the differences between the spectral components and

the spectral centroid.

• Loudness: measures thehuman’s sensationof themagnitudeof the soundwhen it reaches

the ears. Loudness features are usually computed with respect to perceptual scale. Spe-

cific Loudness, proposed by Zwicker (Zwicker et al. 1957), is defined as the loudness caused

by excitation of the auditory system over one single perceptual scale unit z (which can be

Mel, Bark, rectangular, etc.) Total Loudness of a spectrum is the sumof all Specific Loudness

over the perceptual scale.

• Pitch: is widely used in many areas of acoustic analysis and in different contexts can re-

fer to either the Fundamental Frequency or the perceived sensation of the auditory system.

Pitch determination is not a trivial task. A number of methods have been proposed for

pitch extraction. A comprehensive reviewof thesemethods is donebyHess(W.Hess 1983;

W. J. Hess 1992). In this study, I use the term Fundamental Frequency instead of pitch to

avoid ambiguity. Fundamental Frequency (FF) is the lowest frequency of a harmonic series.

It concurs with the rate of oscillation of the sound source. �e FF is the same as the dom-

inant frequency in case of pure-tone signals, which makes it relatively straightforward

to determine. However, this is not the case with speech and many bird’s vocalisations,

which produce complex sound (having harmonic structure). �e fundamental frequency

of a harmonic series can be determined as either the lowest harmonic or more reliably

(in the case of missing fundamental) by finding the largest common denominator of the

harmonics.

• Harmonicity: relates to the proportion of harmonic components in a signal. Harmonic

Ratio (HR) is the ratio of harmonic power to total power. �e formula to calculate har-

monicity is given in the MPEG-7 specification (Kim et al. 2006, Pg. 33)

67

5.2.1.3 Use of descriptive features in relatedwork

Use of frequency features in the "descriptive" class is very limited in the analysis of birdsong.

Fundamental frequency is one exception that can be found being used on its own in early stud-

ies, for example: (Z. Chen and Maher 2006; Franzen and Gu 2003; Ito et al. 1996; Jancovic et

al. 2013). Often several descriptive features are used together; for example in analysis of song

development (Derégnaucourt et al. 2005; O. Tchernichovski et al. 2004) and comparing calls

of brood parasite (Ranjard, M. G. Anderson, et al. 2010). However, manually selecting a set of

features is ad hoc in nature and should be discouraged. A slightly better approach is to include

a large number of descriptive features and hope that a machine learning model will learn to

assign more weights to more relevant features. Studies that used only descriptive features in

this way are rare, examples are (Acevedo et al. 2009; Myron C. Baker and Logue 2003; Z. Chen

and Maher 2006). Often when feature selection is involved, descriptive features are used in

addition to abstract features such as MFCCs.

5.2.2 Abstract features

�e abstract feature group, which includes cepstral domain and the physical subdomain of the

frequency domain, are features that are only meaningful mathematically i.e. they don’t map

onto human perception of sound. �ese features are listed in Figure 5.3.

5.2.2.1 Frequency domain physical features

Physical features are mechanical properties pertaining to audio signal in general and not to

human perception, therefore it is often not possible to assign semantic meanings to these fea-

tures. Features in this group include:

1. Multi-resolution features are coefficients ofWavelet transform and related transforma-

tions. �ese coefficients can also be used to construct a scalogram - a multiresolution

spectrogram. Existing features extracted from a spectrogram can also bemodified to be

extracted from a scalogram. In addition, there are unique features of wavelet transform

coefficients such asDoubechiesWavelet Coefficients Histogram (DWCH) (Li et al. 2003).

2. Spectral features are calculated from the spectrogram, they include: Subband Energy Ra-

68

D
om
ai
n

Su
b-

do
m
ai
n

Family Features
Fr
eq
ue
nc
y

Ph
ys
ic
al

Fourier
spectral

Subband Energy Ratio; Spectral Flux;
Spectral Slope; Spectral Landmarks;

Multi-
resolution

Wavelet Coefficients; Daubechies
Wavelet Coefficient Histogram

Ce
ps
tr
al

Perceptual
Filter Bank

MFCC and variations (xFCC) and extensions
(Autocorrelation MFCC; RAS-MFCC; CHNRAS-
MFCC; Noise-weighted MFCC; Extended BFCC)

Linear
Prediction

Linear Predictive Cepstral Coefficients (LPCC);
Perceptual Linear Predictive Cepstral Coef-
ficients (PLPCC); Relative spectral (RASTA) -
PLPCC; Linear Predictive Cepstral Coefficients

Figure 5.3: Taxonomy of abstract acoustic features.

tio (SER) or Spectral SubbandEnergyRatio (SSER), defined as the ratio of the sumof energy

in one subbandover the total energy of thewhole spectrum; Spectral Flux (SF) is ameasure

of the changes in the shape of the spectrum over time. SF is computed as the Euclidean

(L2) distanceof twoconsecutive spectral frameswithnormalisedPSD;Spectral slope: is the

slope of a linear regression x(f) = slope× f+ interceptwhere x(f) is the magnitude

function and f is the frequency value.

5.2.2.2 Cepstral domain features

Cepstral analysis operating on the cepstral domain is a technique developed by Bogert et al.

(1963) todistinguishbetweenearthquakesandundergroundnuclear explosions. �is technique

originated from the observation that the echoes of an explosion have clear harmonic structure

while seismic activities do not. �is makes it ideally suited to the study of natural sounds that

also have harmonic structures. One of themost frequent applications of the cepstral domain is

in calculating cepstral coefficients (CCs). CCs are simply the first n values of a cepstral series,

which is the result of Fourier transforming thepower spectrum. Most used cepstral coefficients

includeMel FrequencyCepstralCoefficients (MFCC) andLinearPredictedCepstralCoefficients

(LPCC). �e number of coefficients, which is also the number of dimensions of the extracted

69

feature, is often a configurable parameter. �emathematical details of calculatingMFCC from

acoustic signal can be found in Sahidullah and Saha (2012). For LPCC, first the parameters of

Linear Predictive Coding (LPC - a model based on the source-filter model as presented in Sec-

tion §3.3.1) are extracted from each sound frame, then either the Auto-regression or Levinson-

Durbin recursive algorithms are used to derive their cepstral coefficients. Algorithmic details

of both methods can be found in Zbancioc and Costin (2003).

5.2.2.3 Use of abstract features in relatedwork

�e most widely used are MFCC and LPCC, which are based on the human’s perception and

production of sound, respectively. As mentioned above, when feature selection is involved,

often descriptive features and abstract features are used together. Examples of this approach

can be found in Somervuo, Aki Harma, and Seppo Fagerlund (2006), Seppo Fagerlund (2007),

Gunasekaran andRevathy (2010), Lasseck (2015), Lasseck (2016). Abstract features are also used

on their ownwithoutmixing with descriptive features, for example usingMFCC only: Kwan et

al. (2004), J. Cai et al. (2007), Graciarena et al. (2010),Weninger and Schuller (2011), Koops et al.

(2014); LPC only: Selouani et al. (2005), Juang and T. M. Chen (2007); Wavelet coefficients only:

Sun et al. (2013); Wavelet and MFCC: Chou and Liu (2009); MFCC and LPC: Ranjard and Ross

(2008), Lakshminarayanan et al. (2009), Fodor (2013). A number of studies also use modified

versions of MFCC to make it less tied to human perception. Suchmodifications include:

• Using a different scale than Mel-scale, for example Human Factor Cepstral Coefficients

(GFCC): Wielgat et al. (2007); Bark-frequency Cepstral Coefficients (BFCC): Boulmaiz et

al.; Mitrović et al. (2016; 2006); Greenwood function cepstral coefficients (GFCC): K. Adi

et al. (2010)

• Adjusting MFCC’s parameters, for example: adjusting the bandwidths of the mel filter-

banks: ShannonandPaliwal (2003), RanjardandRoss (2008); bypassing thedecorrelation

step: Stowell and Plumbley (2014).

MFCC appears to be the most widely used. �e reason for using MFCC in birdsong appears

to be simply due to its successful in speech analysis. Attempts to evaluate MFCC using bird

sounds as data have been made but drew mixed conclusions. Chang Hsing Lee, Y. K. Lee, et

70

al. (2006) and Chou and Ko (2011) found that MFCC outperforms LPCC, Fox (2008) found lit-

tle difference betweenMFCC, BFCC and LPCC. BetweenMFCC and statistical features, Seppo

Fagerlund (2007) found that MFCC performs better although a mixture of both works best,

while Briggs, Raich, et al. (2009) found that spectral density outperforms MFCC. Comparison

between MFCC and BFCC showed no significant differences in speech (Shannon and Paliwal

2003) and animals (Boulmaiz et al. 2016), but Skowronski and Harris (2004) found that GFCC

is more robust to noise in speech recognition tasks.

A thorough comparison of all acoustics features for birdsong is still lacking, but it is highly

unlikely to yield any universally "best" feature set. Due to the diversity of vocalisation between

different species, each featuremaybemore suitable for one species and less effective for others.

Rather than attempting to establish a broad claim about what the "best" features are, it is wiser

to perform feature selection on a case-by-case basis using empirical evidence.

5.3 Feature length standardisation

Syllables vary in length; even syllables of the same type will be sung at slightly different length

for eachutterance. �e lengths of the feature vectors are therefore proportionally unequal. �is

makes it difficult to express syllables efficiently as points in a finite dimensional vector space.

However, a vector space where data points can be differentiated by their relative positions is

a fundamental process of many computational analyses. Often there is no natural way to cal-

culate the distance between two vectors of different lengths. �is difficulty is increased when

dealingwith sequential data, suchasbirdsong syllables in this case, because the structureof the

underlying process is often hard to infer (Bicego et al. 2003). For most computer algorithms,

it is necessary to perform standardisation of input length as a preprocessing step. �is step is

intrinsic even in algorithms that were proposed to process variable length input directly.

Ina studyonsequencedata clustering,Bicego (Bicegoet al. 2003) identified threeapproaches

to feature length standardisation: feature-based, proximity-based and model-based. �e feature-

based approach extracts a set of features that captures the dynamics of the temporal pattern.

Proximity-basedapproachesaimatdevisinga similarityordistancemeasuresbetweensequences

regardless of their difference in length. Finally, inmodel-based approaches, themain effort is to

findananalyticalmodel (or a set ofmodels) that bestfits thedata, throughwhich each sequence

71

can be mapped to a data point in a latent space. A similar categorisation is found in (Ye 2003)

where two approaches are identified based on whether an assumption can be made regard-

ing the source or method of generation of the sequences. �e discriminative approachmakes no

such assumption, thus it is equivalent to the combination of feature-based and proximity-based

whereas the generative approach does thus is equivalent to themodel-based approach. Based on

these studies, I identified four categories of feature length standardisation methods: aggrega-

tive methods, image descriptive methods, dictionarymethods, andmodel-basedmethods.

For image descriptivemethods, image processing techniques are applied to detect blobs of high

energy (regions of interest - ROI) in two dimensional representations (e.g. a spectrogram, for

example in (Briggs, Lakshminarayanan, et al. 2012; Ruiz-Muñoz et al. 2015) or aWavelet scalo-

gram (Seppo Fagerlund 2007; Selin et al. 2007)), fromwhich a number of descriptors can be ex-

tracted. However, these methods can only work under the assumption of high energy to noise

ratio, such that within the end points of a syllable, only one ROI is found. �us, it is not gener-

ally applicable to birdsongs, especially those with high harmonic structures.

For dictionary methods, syllables are represented by their proximities to a set of representa-

tive templates (adictionarywhereeach template is a codeword). Proximity canbe calculatedusing

methods suchasDynamicTimeWarping (ChuandBlumstein2011; KoganandMargoliash 1998;

RanjardandRoss 2008; SomervuoandAkiHarma2004), spectrogramcross-correlation(Myron

C. Baker and Logue 2003; Lasseck 2013; Lasseck 2015; Potamitis 2015), k-means (Briggs, Raich,

et al. 2009; Somervuo and Aki Harma 2004; Wellock and Reeke 2012). I identified several is-

sues with these methods which make them ill-suited for the multi-user and highly interactive

nature of Koe. First, the dictionary is specific to one species thus the results are not compara-

ble between species. Second, the quality of thesemethods depend verymuch on the proximity

method. Finally, proximitymeasures are slow and exponentially so as the size of the dictionary

increases.

For aggregative methods, feature vectors are stretched or squeezed to a fixed length. If there

are little changes in the acoustic properties of the syllable frames, the syllables can be assumed

stationary. In this case, they can be aggregated using summary methods and temporal order of

frames is completely discarded. �e assumption of stationary is true in limited cases, such as

insect sounds. However, it is not uncommon to see studies of birdsong to make this assump-

72

tion, either implicitly or explicitly. On the other hand, resamplingmethodsperform stretching or

squeezing the feature sequences to a set length. �is approach ismoreacceptable than summary

methods, as it is justifiable to assume that during a small number of frames, the acoustic prop-

erties are close to stationary. InKoe, both summarymethods and resamplingmethods are available

to the users. More details are given in Section §5.3.1.

Formodel-based methods, feature vectors are converted to a representation in latent space by

a heuristic model (which involves training), such as Hidden Markov Model (HMM) or Neural

Networks. �rough training, these models are able to learn the temporal structure of the syl-

lables one time step at a time and build a low fidelity representation of the entire duration in

their core (the hidden layers of a neural network, or the hidden states of a HMM). Because the

core has fixed length, the low fidelity representation is also fixed length. �rough this process,

a syllable of any length can be compressed into a data point in latent space, where its temporal

structure is abstract but not lost and its acoustic properties are abstract but not distorted. �is

is intuitively very similar how our brains form a rough idea about a sound we hear, no matter

how long or short it is. In Koe, this type of feature length standardisation is not yet available to

the front-enduser, however initial experiment shows promising results. More details are given

in Section §5.3.2.

However, only aggregative methods are available to Koe’s users.Model-basedmethods are exper-

imental but showing promising results.

5.3.1 Aggregativemethods

�is category expands the definition of feature-based by (Bicego et al. 2003) to include methods

that discard the temporal order of syllable frames. If there is little change in the acoustic prop-

erties of the syllable frames, the syllables can be assumed stationary. In this case, they can be

aggregated using summary methods and completely lose the order of the frames. On the other

hand, resamplingmethods perform stretching or squeezing the feature sequence to a set length -

throughwhich process the frameorder isn’t completely lost, but distorted. �e last set ofmeth-

ods, named the region of interest (ROI)-descriptormethods, involves image processing techniques

to detect the area with high concentration of acoustic signal and then use description of this

area to represent the signal. �ese methods can only be used if the primary feature value has

73

spectrogram-like visualisation, such as spectrum, wavelet coefficients andMFCCs.

5.3.1.1 Summarymethods

Simple statistical properties that summarise the whole acoustic feature sequence are surpris-

ingly common in birdsong analysis. In the majority of studies that employed these methods,

abstract acoustic features such asMFCCs tend to be the only source or one of the sources from

which statistical properties are calculated. Means and variances of descriptive features and

meanMFCCswere used in Seppo Fagerlund (2004),Fagerlund andHarma (2005),Seppo Fager-

lund (2007),Evangelista et al. (2014),Qian et al. (2015). Average, min, standard deviation of

MFCCs and Mel spectra were used in Stowell and Plumbley (2014). Koops et al. (2014) used

only MFCCs but aggregated in three different ways for comparison: only mean; mean + vari-

ance; mean + variance, speed (first derivative), acceleration (second derivative) and means +

variances of three equal segments (to be explained in Section §5.3.1.2). Myron C. Baker and

Logue (2003) used the center spectrogram frame of the syllable. Very rarely, statistical proper-

ties of a single descriptive feature were used, for example: Z. Chen andMaher (2006) extracted

12 properties of the dominant frequency sequence. Figure 5.4 illustrate the process using an

example of two unequal length feature sequences being summarised by average.

1 2 3 4 5 3
10 20 30 40 50 30

2 3 5 3
6 7 8 7

Figure 5.4: Two two-dimensional sequences of different lengths (left and right) summarised using
average into two-dimensional feature vectors of the same length (length=1)

5.3.1.2 Resamplingmethods

Resamplingmethods for length standardisation often take the form of subdividing the feature

sequence into a fixed number of equal-length subparts before applying summary methods in

the section above. �is approach is a middle ground between discarding temporal informa-

tion and keeping it intact. �e level of distortion of the temporal information following this

approach depends on the number of subparts the syllables are divided into. �e number of

subparts is three in Pozzi (Pozzi et al. 2010), Chen (W. P. Chen et al. 2012), and Koops (Koops

74

et al. 2014), eight in Acevedo (Acevedo et al. 2009), while in Nanayakkara (Nanayakkara et al.

2007) this number is 20. Figure 5.5 illustrate the resampling process using an example of two

unequal length feature sequences being resampled by using average of three subparts.

1 2 3 2 2 2 5 4 3 2 2 4
10 20 30 20 20 20 50 40 30 20 20 40

1 2 2 2 4 3 2 2 3.5
10 20 20 20 40 30 15 20 35

Figure 5.5: Two two-dimensional sequences of different lengths (top and bottom) resampled using
average of three subparts into two-dimensional feature vectors of the same length (length=3). �e
colours represent the correspondence of subparts’ original value and final value after resampled

5.3.2 Model-basedmethods

In this section I review neural network-basedmethods and follow upwith the implementation

of an auto-encoder in Koe. Hidden Markov Model is a viable choice, however it is not used in

Koe. Example of works that used HMM for syllable standardisation can be found in Lakshmi-

narayanan et al. (2009), I. F. Chen and Chin Hui Lee (2013) and Levin et al. (2013).

Recently, deep learning has been used for encoding acoustic data into fixed-size vectors. For

supervised learning: Maas et al. (2012) trained a regression CNN using acoustic sequences as

input and semantic decomposition (such as bags of phonemes) as output. Kamper et al. (2016)

used a Siamese network to encode a pair of acoustic sequences and minimise or maximise a

distancedependingonwhetherapair comes fromthe sameordifferent classes. Inbothof these

works, variable length inputs were normalised (by dividing into 4 subparts inMaas et al. (2012)

and by zero-padding inKamper et al. (2016)). True handling of variable length input startswith

G. Chen et al. (2015) uses Long short-termmemory (LSTM) to obtain whole word embeddings

for a query-by-example search task. For unsupervised machine learning, Chung et al. (2016)

75

and Shen et al. (2018) used sequence to sequence auto-encoder (SA) to train a recurrent neural

network (RNN) to reconstruct audio segments. �e hidden layer is used to encode arbitrary

length sequences into fixed-size representation. Values of an encoded input in this hidden

layer are said to be coordinates of a latent space, and can be used to reconstruct the original

sequences undistorted at their full length. Recall Figure 4.5 and the RNN model presented in

Section §4.5.2, there an RNN is trained to predict whether the next frame fi is a syllable frame

(expected output 1) or not (expected output 0). An auto-encoder is very similarly structured,

except that the network is trained to predict the value of the next frame (expected output is

vector fi+1). Once trained, theRNNcan be considered a pair of encode-decoder network. From

the input layer to the central hidden layer is the encoder, and from the central hidden layer to

the output later is the encoder, as depicted in Figure 5.6.

... ...

...

x1 x2 xt

x1 x2 xt

y1 y2

x3

y3 yt

Audio segment

Acoustic features

Encoder

Decoder

Fixed-size representation

Figure 5.6: An audio auto-encoder is a recurrent neural network (RNN) with two parts: an encoder and
a decoder. An audio segment of arbitrary lengthn has acoustic feature sequence x = (x1, x2, ...xn).
�e encoder encodes this sequence in a fixed-size vector (magenta block) and the decoder decodes this
vector to a new sequence y = (y1, y2, ...yn). �e training process is to minimise the reconstruction

errorMSE =
∑n
i=0(xi − yi)

2

Normally, an auto-encoder will have more than one hidden layer, and the structure of the

neural network is symmetric, i.e. two parts have the same number of layers and the number

of neurons at each layer, except the directions of connection are opposite. Given a syllable as

input, the information encoded at the central hidden layer can then be use to reconstruct the

essence of the original syllable. A recent work using the same neural network structure for

similar type of data is by Yeh et al. (2019) where they trained a time-series auto-encoder to re-

construct factory plant’s sensory data for fault prediction. When compared to other machine

76

origi recon origi recon origi recon origi recon

Figure 5.7: Side-by-side spectrograms of sample original syllables (origi) and their corresponding
auto-encoder reconstruction. Auto-encoder structure is: 257 (input)× 257× 128× 257× 257 (output).

Training samples are syllable end points and audio data from the same files listed in Table 4.1.

learningmethods, the auto-encoder appeared to bemore effective especially in case of data im-

balance. Inspired by successful operation on time-series data, I implemented an auto-encoder

in Koe as an experiment to test howwell it performs on audio data. Although this is still exper-

imental, the results are very encouraging. Figure 5.7 shows spectrograms of several original

syllables and their auto-encoder reconstruction side by side. We can observe that the auto-

encoder is able to capture the essence of the syllables while being relatively noise-proof. �is is

the proof of concept necessary to justify bringing neural networks to Koe’s client side.

5.4 Implementation inKoe

5.4.1 User interface

In Koe, feature extraction can be found under submenu "Extract features and compare". �e

page, shown in Figure 5.8, is a control panel where the user can select any combination of fea-

tures, then any combination of aggregative standardisation methods and then submit the job

toKoe’s task queuewhere it will be picked up once aworker becomes available. �is is necessary

as feature extraction is a timeand resource consuming task. Once a job is done, theuserwill get

a notification via email. �e finished job can be used as input for other analysis or downloaded

(as a binary file) to be used in other software.

77

Figure 5.8:Main panel of Koe’s Feature Extraction page. User can choose any combination of features,
and any number of aggregative standardisation methods. �e user can name the job submit it to Koe’s

task queue. Once finished, the results can be downloaded as a binary file.

78

5.4.2 Koe’s task queue

Koe employs Celery (Solem 2016) to manage and execute distributed tasks in the background

independently from the main web server. Up to 10 tasks can be executed simultaneously in

Koe’s official webapp. For the docker distribution, this number is configurable and for devel-

opment environment, Celery can be disabled for Koe to handle tasks directly and to allow the

developer to debug. When a task is executed, Celeryworkers can accessKoe’s database to query

and store information such as syllable endpoints and task progress, such thatKoe cannotify the

user when the task finishes or how much percentage-wise the task has progressed, as shown

in Figure 5.9

Figure 5.9:Main panel of Koe’s Feature Extraction page. User can choose any combination of features,
and any number of aggregative standardisation methods. �e user can name the job submit it to Koe’s

task queue. Once finished, the results can be downloaded as a binary file.

5.4.3 Implementation and expandability

�e list of features and aggregationmethods shown in Figure 5.9 come from a database query.

Specifically, table koe_feature and table koe_aggregation (shown in Figure 2.2 in Chapter

2) store metadata for each feature and aggregation methods implemented in Koe’s backend.

�is arrangement allows more flexibility in choosing what can be made available to the users

and what can be experimental. New features and aggregation methods can be developed and

tested at the backend andwill not be available to the user until the developer is certain that they

perform correctly.

79

Koe’s features come from three main sources: librosa (Mcfee et al. 2015), SciPy (E. Jones et

al. 2014), and self-implemented. In order to keep the process consistent and to allow future

expandability, all function calls to these features are wrapped in a common interface shown in

Code block 4

1 def feature_name(args):
2 # Unrolled args
3 fs, nfft, noverlap = unroll_args(args, ['fs', 'nfft', 'noverlap'])
4

5 # Perform calculation, or call external libraries
6 feature_value = ...
7 return feature_value

Code block 4: Common interface of all feature extraction methods

All feature extraction functions have the same function signature where args is a dictionary

with default key-value pairs given in Table 5.1.

Table 5.1: Key-value pairs that can be provided through the args parameters for all feature extraction
functions.

Key Value

wav_file_path
Absolute path to the original wav file.

fs
Sampling frequency of the wav file.

start
Begin of the syllable (millisecond) with respect to the beginning of the
audio file.

end
End of the syllable (millisecond) with respect to the beginning of the
audio file.

center
A boolean indicating whether padding should be used in calculating
power spectral density.

nfft
Number of FFT bins.

noverlap
Number of samples to advance for each frame.

lpf
Low-pass filter frequency.

hpf
High-pass filter frequency.

win_length
Length of the frame (in samples) overwhich the feature is extracted.

80

Extra arguments can be added dynamically to the args object, in situationwhere the feature

extraction function expects specific arguments, for example, lpcc and lpc requires parameter

order. �is common function signature allows all feature extraction methods to be called in

the same way in loop-like fashion, specifically, by function

extract_segment_feature_for_audio_file in package feature_utils, regardless of what

combination of features the user requested. Code block 5 shows examples of two features, one

is implemented by Koe and one by librosa. In this example, spectral_bandwidth is not im-

plemented by Koe but is simply a wrapper to call spectral_bandwidth from library librosa.

To do that the wrapper simply unrolls the arguments to get all the information needed to call

the actual function, and the caller

(extract_segment_feature_for_audio_file) does not need to know specifically what argu-

ments the actual function needs. Acoustics feature extraction is a dynamic field where new

features are invented frequently. �erefore, this set up will allow advanced users and future

contributors of Koe to expand the feature set as they need.

1 def frame_entropy(args):
2 psd = get_psd(args)
3

4 # Entropy of each frame (time slice) averaged
5 newsg = (psd.T / np.sum(psd)).T
6 return np.sum(-newsg * np.log2(newsg), axis=0)
7

8 def spectral_bandwidth(args):
9 psd = get_psd(args)
10 fs, nfft, noverlap = unroll_args(args, ['fs', 'nfft', 'noverlap'])
11 hopsize = nfft - noverlap
12 return rosaft.spectral_bandwidth(y=None, sr=fs, S=psd, n_fft=nfft,
13 hop_length=hopsize)

Code block 5: Examples of feature extraction function using the common interface. frame_entropy
is Koe-implemented, while spectral_bandwidth is a wrapper for a function in librosa. �ey all

have the same function signature.

5.4.4 Storage

Extracted feature values are binary data that best stored on hard-drive instead of database.

�is is due to several reasons:

81

• I attempted to extend Luscinia (R F Lachlan 2007), which stores binary data on an H2

database (a SQL database engine written specifically for Java). From extensive experi-

ence with this software, I found that storing binary data on database is an extreme per-

formance bottleneck.

• Once extracted, feature values are stable, so database update queries for this purpose is

rare, thus using SQL database is missing the point.

• �e size of the database never shrinks, thus on the rare occasion when an update query

to change stored values is performed, it incurs permanent loss of storage. To recoup this

loss, the database needs to be trimmed frequently, leading to higher cost ofmaintenance

andmore down times.

�us a principle of software design inKoe is that no binary data can be stored in the database.

Instead, feature metadata is stored against syllable ID, which reference the binary file where

the actual data is stored on the hard drive. Koe initially used Hierarchical Data Format version

5 (HDF5) to store binary data, however I quickly realised that this data format is only suitable

for hierarchical data, while feature values are not. In addition, Koe allows the user to choose

any set of syllables from any combination of dataset to form a "collection", fromwhich any com-

bination of features and aggregation methods can be chosen. �is requires random access to

the binary data which is extremely slow in HDF5. To solve this issue, I wrote a new library tai-

lored specifically for Koe’s needs, called koe/binstorage3.py (3 is the version of the current

implementation).

5.4.4.1 Physical storage

Onhard drive, binary feature data is stored in the a similar directory structure as shown in Fig-

ure 5.10, where Sub-figure 5.10a and Sub-figure 5.10b list the actual storage of the fundamental

frequency and spectral bandwidth values of the first 2000 syllables on Koe’s server, respectively.

�e current binary storage is version 3, hence the name binstorage3 and this is not a ran-

dom choice. Version 1 of the binary storage libraries stores everything in one big file, where

version 2 does the opposite: one file per feature value per syllable ID. Both approaches lead to

82

| user_data
| binary

| feature3
| fundamental_frequency

| mean
index.1-1000
value.1-1000

index.1001-2000
value.1001-2000
...

| median
index.1-1000
value.1-1000

index.1001-2000
value.1001-2000
...

(a) Fundamental frequency

| user_data
| binary

| feature3
| spectral_bandwidth

| mean
index.1-1000
value.1-1000

index.1001-2000
value.1001-2000
...

| median
index.1-1000
value.1-1000

index.1001-2000
value.1001-2000
...

(b) Spectral bandwidth

Figure 5.10:Directory structure of feature values stored on the hard drive.

downgradedperformance. With one bigfile, the cost to append or update data grows exponen-

tially as the data file grows. With individual files, the sheer number of files on the hard drive

quickly overwhelms the operating systemwhen other components of Koe perform a simple di-

rectory listing. Version 3 takes themiddle ground by employing pagination. Here, each pair of

feature−aggregation method forms a folder. Feature values of each block of 1000 syllables

(according to their IDs) are concatenated into one file e.g. fundamental_frequency/mean/

value.1-1000 contains themean fundamental frequencyvaluesof syllables#1 to syllable#1000.

To knowwhere the feature values of syllable #x starts and ends within the concatenated file, as

well as the dimension details of the original feature value array, an index file e.g. fundamental

_frequency/ mean/ index.1-1000mapping the ID to the necessarymetadata is also provided.

5.4.4.2 Store and retrieve data

�is library is implemented inkoe/binstorage3.pyandprovides twooverall operations: store

and retrieve. �e store operation internally calls one of the following operation: store_new,

update_simple, append, update_expand. �e specifications of these operations are provided

in Table 5.2.

�e key to the performance of binstorage3 is that the value file is never rearranged. In the

83

Table 5.2:Operations to store and retrieve data by binstorage3

Operation Description

store_new
Create a new value-index pair and write binary data when the syllable
ID is not in the range covered by any of the existing value-index pairs.

append
Add binary data and index to the end of the value-index pair when the
syllable ID is in the range covered by an existing value-index pair.

update_simple
Modify the value file and update the index file (if necessary) if the pre-
vious feature values of the target syllable is already stored and the new
values (array) has the same or shorter length of the previous value ar-
ray.

update_expand
If theprevious feature values of the target syllable is already storedand
the array of new value is longer than the previous array, then leave the
previous value array untouched, append thenewvalue array at the end
of the value file, and update the index file.

rare case where it is necessary to update an existing feature value array with a longer array, the

longer array is appended and the index of that syllable is simply updated to point to the new

location, the previous value array is still there but never used. �is might increase hard drive

use but only by an insignificant amount.

To retrieve feature value for one syllable, binstorage3first identify the location of the value-

index files, which is

user_data/ binary/ feature3/ <feature name>/ <aggregation method>/,

calculate thepage that the syllable IDbelongs, e.g. syllable ID123456belongs to thepage<123000-

124000>, thus the value-index files are respectively value.123000-124000 and

index.123000-124000. Next, binstorage3 opens the index file to search for themetadata as-

sociated with such ID. Finally, knowing the begin and end, and dimensions of the value array,

binstorage3 perform a seek and read to get the value array, without having to read the entire

file.

5.5 Conclusion

�e aim of feature extraction is to derive a representation of the signal that can be used tomap

each datapoint to a dimensional space where the distance between two datapoint reflect how

similar they are. A good dimensional space enables the datapoints (in this case, birdsong sylla-

84

bles) to be sorted or clustered, which in turn allows operations such as classification or cluster

structure analysis to take place. In Chapter 6 that follows, I present how these operations are

carried out in Koe.

85

CHAPTER 6

VISUALISATION AND CLASSIFICATION

6.1 Introduction

Koe was initially written as a tool to facilitate manual labelling of New Zealand Bellbird (An-

thornis melanura) syllables using both visual and audio cues. Bellbirds have a very diverse vocal

repertoire, with hundreds of fine-scale syllable types. Some types appear very rarely while oth-

ers are hundred times more frequent. �is makes classification very difficult to do in existing

software such as Luscinia, Raven, or Sound Analysis Pro as they operate on a single-file basis,

thus are incapable of showing all segmented syllables at once. Koe partly solved this issue by

providing a Unit table page, where all segmented syllables from all songs in the database are

present in one table. However it is still impossible to display and keep track of tens of thou-

sands of syllables in one single view. To solve this issue, I implemented a similarity index to sort

the unit table by similarity, and later I implemented interactive clustering visualisation where all

syllables are visualised in two or three dimensional space where they can be grouped by prox-

imity and labelled in bulk. Both similarity index and clustering visualisation are the products

of feature extraction presented in the Chapter 5. In this chapter, I start with introducing the

concepts cluster analysis, followedbyvisualisation techniques. �euser interfacewhere cluster

analysis and similarity index are utilised is presented next. �is is followed by the implemen-

tation of these functions in Koe. Finally I present a case study to demonstrate how Koe can be a

great tool for validating multi-expert labelling.

86

6.2 Cluster analysis

Cluster Analysis or Clustering is a technique widely used in data mining to partition a set of un-

labelled data objects into groups (clusters) where members of the same group share similar

characteristics. It is a form of machine learning where the training process is unsupervised,

although typically some prior knowledge (such as the number of clusters or statistical proper-

ties of the clusters) are still required.

�e classification of birdsong syllables into groups is useful for detecting overall changes,

such as comparing songs between species, populations or individuals over space or time (Webb

et al. 2021). Traditionally this has been done by (manual) expert’s judgement, for example:

Baptista and King studied geographic variations and dialects in the songs of the Puget Sound

White-Crowned Sparrow (Luis F Baptista 1977) and the Montane White-Crowned Sparrows

(Luis F. Baptista and King 1980) by dividing the segmented syllables into groups according to

their types (such as note, whistle, buzz) and calculating the statistics for each group. However,

manual classification inevitably introduces human’s subjectivity into the process. While this is

not bad practice per-se, it reduces the reproducibility of the process. �us, Nelson et. al. (Nel-

son, Hallberg, et al. 2004) repeated the study on the Puget Sound White-Crowned Sparrow

using two independent judges with different knowledge of the origin of the syllables to sort

complex and simple syllables into predefined groups. �e judges were allowed to create new

categories if necessary. �ey found that the judges highly agreed with each other, thus justify-

ing their use of the clustering result from a single judge later in their study. While the problem

of human subjectivity can be partly mitigated by demonstrating agreement between indepen-

dent judges, the only way to provide full reproducibility is by removing the human factor and

using computer-basedmethods.

In this section, I introduce two clustering techniques that are available to Koe’s users.

6.2.1 Hierarchical clustering

Hierarchical clustering is amethod that aims toproduce clusters inamulti-level tree-like struc-

ture. From the bottom up, each object belongs to a cluster which in turn belongs to a larger

cluster and so on. At the top of the tree is the super cluster where all objects belong. �e con-

nectivity between two objects is determined by their proximity (distance) in a feature space. A

87

cluster closer to the bottom of the tree contains objects that are closer to each other, and vice

versa. �is tree-like structure is often visualised by a dendrogram, shown in Figure 6.1.

Hierarchical clustering is commonly used in biology to formulate the phylogenetic relation-

ship between species or subspecies. �euse of thismethod in birdsong analysis can be found in

many studies. For example,M. E. Anderson and Conner (1985) classify dialects of the Northern

Cardinal (Cardinalis cardinalis) based on frequency of appearance of each type of syllables; Po-

dos et al. (1992) analyse song repertoire of the Song Sparrows; and Große Ruse et al. (2016) use

syllables found in one song of the Red Warbler as input to compare the result of an automatic

clustering framework with that of experts.

Hierarchical clustering can be implemented using either of two strategies:

• Agglomerative method: is a bottom-up strategy that starts with each data point being

one cluster of its own and iteratively merges small clusters into one.

• Divisivemethod: is a top-down strategy that starts with all data points belonging to one

cluster, and then iteratively dividing big clusters into small ones

Both strategies lead to identical results, given that the same linkage criterion is used. Linkage

criteria are different ways to calculate the distance between clusters, or the radius of the en-

closed cluster, thus they affect the final shape of the hierarchy. To name a few: single-linkage de-

termines the cluster distance by shortest (minimum) distance from anymember of one cluster

to any member of the other cluster: min
(
d(a, b) : a ∈ A, b ∈ B

)
, in contrast, complete link-

age uses maximum cross-cluster distancemax
(
d(a, b) : a ∈ A, b ∈ B

)
while UPGMA finds

middle ground between the two by using average distance 1
|A||B|

∑
a∈A
∑

b∈B d(a, b). Figure 6.1

illustrates the clustering result using UPGMA for a toy dataset containing five data points with

given pair-wise distances.

“Cut the tree” is the method of acquiring specific clustering configuration by setting a cutoff

threshold to be the maximum radius of the cluster. �e example shown on the right side of

Figure 6.1 is the clustering configuration when the cutoff is set at 15. Two clusters C1 = [d, c]

(in blue) and C2 = [e, b, a] (in red) are formed because their radii are 14 and 11 respectively.

It appears straightforward but the cutoff threshold is crucial for the final clustering result and

there is no objective way to determine it. Often trial and error are involved in finding a rea-

sonable value for the cutoff threshold, relying on prior knowledge of the dataset (i.e. knowing

88

cd abe

8.5

16.5

14

11

Radius

0

0 17 21 31 23

a b c d e

0 30 34 21

0 28 39

0 43

0

a

b

c

d

e

cutoff15

Figure 6.1: Illustration of hierarchical clustering using UPGMA. Left: upper triangle of the distance
matrix. Right: clustering result.

roughly how the cluster should look like apriori). �is is documented by Gil and Peter J B Slater

(2000) in their study ofWillowWarbler (Phylloscopus trochilus) song repertoire. �ey subjectively

determined the cutoff threshold that would yield a “sizeable” number of clusters. Podos et al.

(1992) tackles this problem by using a moat index, which describes the degree to which cluster

groups are isolated or externally discontinuous to each other. �e cutoff value that maximises

themoat index is determined to be the optimum. Gil and Slater did try this approach but even-

tually decided against it because of the effect of outliers.

6.2.2 Semi-automatic clustering

While fully-automatedclusteringhasbeenused inprevious studies suchasbyRanjardandRoss

(2008) to study dialectal variations of birdsongs or by Chou and Ko (2011) to recognise species,

it is ill-suited for syllable classification where there are many types of syllable and their distri-

bution in a species’ repertoire is uneven, i.e. there are a lot more instances of commonly found

syllables than that of rare syllables. �is is the challenge that my colleagues and I faced with

bellbird songs. I judged that semi-automatic clustering is most suitable in this situation. �is

is the technique where labelling is still done manually, but expedited by bulk-labelling of sim-

ilar syllables in batches, rather than one-by-one (as in other software). Bulk-action is possible

with a visual aid, such as a two- or three-dimensional plot, where syllables are clustered to a

high degree. �is technique has been employed by several previous studies such as byO. Tcher-

nichovski et al. (2004) andDerégnaucourt et al. (2005) to study the song crystallisation process

89

in zebra finches. Koe provides two tools for bulk-labelling: by labelling all multi-selected rows

of the unit table after sort with similarity index, and by labelling all units enclosed in a bound-

ary drawn directly on an interactive two-dimensional plot. �e next section explains in detail

how these actions can be performed by the user.

6.2.3 Dimensionality reduction

Many frequently used features, which are extractable by Koe, are multi-dimensional; for ex-

ample MFCC usually has at least 13 dimensions. Features are also usually used in combination

with the intention that themore features are used, themore differentiable structure of the dat-

apoints can be covered, and the correlation between features can be reduced afterwards using

a technique called dimensionality reduction. �is technique seeks to reduce the number of

dimensions while preserving the differentiability as much as possible. �is is similar to lossy

compression techniques widely employed for audio and video insofar as the results should re-

semble the original data while size is significantly smaller. In Koe, dimensionality reduction is

usedmainly for visualisation. In order to present syllables as data points on a cluster plot, their

acoustic features must first be reduced to two or three dimensions.

Koe implementspopularordination techniques, suchasPrincipalComponentAnalysis (PCA),

Independent Component Analysis (ICA) and Multi-Dimensional Scaling (MDS), as well as the

more recentlyproposed t-distributedStochasticNeighbourEmbedding (t-SNE) (VanDerMaaten

andHinton 2008). t-SNEaims to preserve local structure in the data, so is particularly effective

for defining and discriminating between different clusters.

6.3 User interface

6.3.1 Submit jobs to construct ordination and calculate similarity index

Construct ordination andCalculate similarity can be foundunder submenuExtract features and com-

pare, in the sameplacewithExtract unit features. Similarly, the user needs to submit a job toKoe’s

task queue and wait for a notification email.

Figure 6.2 shows the control panels where the user can submit these jobs. Sub-figure 6.2a

90

(a)Control panel to construct ordination (b)Control panel to calculate similarity.

Figure 6.2: Control panels accessible under submenu Extract features and compare to create an ordination
for clustering or similarity index for sorting.

shows the form to create an ordination job. �e user can choose a data matrix (which is an ex-

tracted feature set), the ordinationmethod (either PCA, ICA or t-SNE), number of dimensions

(can only be 2 or 3), and optionally any parameters that they wish to send directly to the under-

lying function. Sub-figure 6.2b shows the form to create a similarity index job. �e similarity

index can be extracted from raw feature values, or from an ordination.

6.3.2 Using similarity index to sort syllables in the unit table

Users of Koe can create as many similarity indices for the same database as they see fit. Once

the job has finished, the similarity index can be selected and applied dynamically to an existing

unit table. �is can be done by selecting an option in theCurrent similarity combo box on the left

side control panel, as shown in Figure 6.3.

Figure 6.3: Left side control panel of the unit table.
Database Bellbirds has two similarity indices

calculated from two different sets of feature values.
Upon selection the index is applied dynamically to

the unit table.

Todemonstrate theusefulnessof a similarity index, Figure6.4 showtheunit tableofdatabase

Bellbird_TMIwhere afilter (family:down|upsqueak) is applied to showonly syllables that are

91

classified to belong to either Down or Upsqueak family. �is is done on purpose to show more

than one variety of syllableswithin the limited space of a figure. �efiltered table is then sorted

by similarity index (ascending order). We can observe that the natural orders of syllables do put

similar syllables near each other.

Figure 6.4: Koe’s unit table sorted by similarity index (ascending order) filtered to show only syllables in
familiesDown or Upsqueak. Example data are New Zealand bellbird Anthornis melanura song units from

database Bellbird_TMI.

�eunit table also allows bulk-labelling bymulti-selecting syllables that look and sound sim-

ilar, and then select "Bulk set value" from a dropdownmenu from the Label, Family or Subfamily

column. �e sound of each syllable can be played back by clicking on its spectrogram. �e

playback speed can also be adjusted to better appreciate temporal details in short or complex

syllables.

6.3.3 Using ordination for bulk labelling in an interactive cluster visualisa-

tion

Koe’s unit table is a big advance onother software in that all units (syllables) are accessible in one

table. However, the space limits of a screen still limit the number of units that can be viewed

simultaneously. When classifying units, only seeing part of the table at a time can result in er-

roneous labelling. �e difference between syllables can gradually grow slow enough to be un-

92

noticeable as the page scrolls, however the accumulative difference could add up significantly

resulting inhaving syllables that look and sounddifferently beinggiven the same label. Koepro-

vides a solution for this issue with the Interactive Ordination plot, as shown in Figure 6.5. �is

plot is produced at the client side using the library Plotly (Inc. 2015) and thus is very fast and

interactive. Interactionsbetween theuser and theplot is interceptedandhandled in JavaScript.

Figure 6.5: Interactive Ordination view allows the user to encircle groups of points on the plot with the
lasso tool, to view their spectrograms and hear their audio. Mousing over a point in a selection

highlights the corresponding spectrogram in the left-hand panel. Selections can be labelled in bulk
directly on the plot or opened as a unit table to view detailed unit information. �e user can zoom,
toggle the visibility of classes, and export the plot as a vector graphic. �is example shows a t-SNE

ordination of 7189 syllables of male and female bellbird song.

In this plot, all syllables appear at once on a two dimensional space. �e example shown here

shows good separation of clusters after all of them have been labelled. �e colour and symbol

of each syllable are according to the label that it is given. �e user typically starts out with an

unlabelled data, where all syllables will have the same appearance (e.g. all are gray-rounded

shaped). A lasso tool allows the user to make a selection of a group of syllable that appear as a

cluster. Upon selection, the spectrogram of all syllables appear on the left side panel where the

user can assess whether they look and sound the same. Syllables that don’t look and sound like

the rest can be excluded, and the final group can be bulk-labelled.

93

6.4 Implementation inKoe

6.4.1 Construct ordination

Upon receiving a job, a Celery worker at the backend calls binstorage3’s retrieve function to

acquire the extracted feature values for the selected datamatrix and calls the selected dimen-

sionality reductionmethods to reduce the original data to the selected number of dimensions.

All dimensionality reduction methods are wrapped in a common interface for better coding

structure and increased extendability. �e worker does not know how to call the underlying

function specifically, but simply invoke the method by finding its function pointer from a dic-

tionary of methods. In Koe, this dictionary is simply a declaration:

1 methods = {'pca': pca, 'ica': pca, 'tsne': tsne}

Where pca, ica and tsne are the wrappers to the following underlying functions:

Wrapper Underlying function

pca sklearn.decomposition.PCA

ica sklearn.decomposition.FastICA

tsne sklearn.manifold.TSNE

�e wrappers have the same function signature shown in Codeblock 6. data and ndims

(number of dimensions) are by definition required by any underlying function. �ey are in-

cluded inanparamsdictionary togetherwithany specificarguments (suchasverbose,perple-

xity, n_iter for TSNE) are constructed and provided as keyword arguments (**kwarg). �e

params dictionary is updatedwith the customparameters provided by the user, throughwhich

these specificarguments canbeadded,modified, or removedbefore the call ismade. For exam-

ple, without user-provided parameters, TSNE is called with perpexity=10 by default. Declar-

ing perplexity=5 will change this value and perplexity=None will remove this parameter,

declaring learning_rate=100will add this parameter to the final call.

94

1 def method_name(data, ndims, **kwargs):
2 # Construct an argument dictionary for this particular method
3 params = dict(...)
4

5 # Update the argument dictionary with the optional parameters
6 # that the user can input
7 params.update(kwargs)
8

9 # Call the underlying function to perform dimensionality reduction
10 result = ...
11 return result

Code block 6: Common interface to all dimensionality reduction methods

6.4.2 Calculate similarity index

Asimilarity index inKoe is an integerdefinedas thenatural order ofdatapoints inadendrogram.

�e natural order of any data point is an enumeration that runs from 1 to N where N is the

number of data points. �is number represents how early a data point can be found to have

membership in a cluster by tracing the dendrogram branches from bottom up. For example,

in Figure 6.1, a and b are the earliest data points that have cluster membership, followed by

e , and finally d and c . �eir natural orders therefore are [a b] = [1, 2]; e = 3; [c , d] = [4,

5]. When two data points from a cluster, such as in case of a and b , either of them can be

assigned natural order 1 or 2. However in the case of e which is linked to an existing cluster,

it can only possibly be assigned the one available similarity index 3.

Table 6.1: Calculating natural orders of syllables shown in Figure 6.1. Sub-table 6.1a shows the linkage
calculated with average distance, sub-table 6.1b shows the natural orders of syllables calculated by Koe.

Cluster indices and natural orders are based 0

Left cluster Right cluster Distance

Index Members Index Member

0 a 1 b 17

4 e 5 a + b 22

2 c 3 d 28

6 a + b + e 7 c + d 33
(a) Linkage tree

Order Data point

0 a

1 b

2 e

3 c

4 d
(b)Natural orders

�e calculation of this example in Koe is detailed in Table 6.1. Upon receiving a job, a Cel-

ery worker at the backend calls binstorage3’s retrieve function to acquire either the ex-

95

tracted feature values if the user has selected a datamatrix, or the ordination data if the user

has selected an ordination. Following data retrieval, the upper left triangle of the distancema-

trix (triu) is calculated for all pairs of points in the dataset. In this example, triu(a, b, c, d,

e) = [17, 21, 31, 23, 30, 34, 21, 28, 39, 43]. �ese numbers are pair-wise distances between any

twodata point, e.g. the distance between c and d isdistc,d = 28. �is distance array is trans-

formed into a linkage list using cluster.hierarchy.linkagemethod available in SciPy. �e

linkage list can be understood as a cluster membership description for all the points and sub-

clusters that can be formed. �e outcome for this example is shown in Sub-table 6.1a. Tracing

the cluster indices fromsmallest (0) to largest (7) tells us that data points a and b initially form

clusters 0 and 1 respectively, then c and d form clusters 2 and 3 and e forms cluster 4. After

all individual data points have been assigned a cluster index, the linkage iterativelymerge them

into composite clusters where the distance between a singular cluster and a composite cluster,

as well as between two composite clusters is calculated using average distance. For example,

diste,[a,b] =
diste,a+diste,b

2
= 23+21

2
= 22. �us, [a , b] form cluster 5, [a , b , e] form cluster

6, [c , d] form cluster 7, and finally [a , b , e , c , d] form the root cluster 8 (which is omitted

from the linkage tree due to redundancy).

�e natural order of a data point follows the order of cluster formationwhen such data point

forms a singular cluster or is merged with others to form a composite cluster. In this example,

following the formationof clusters from1 to8,weacquire thenatural orders shown in sub-table

6.1b as: a =0, b =1, c =3, d =4, e =2. �is is the same order in base 0 as acquired previously

using visual inspection of the dendrogram.

6.4.3 Collaborative labelling

InKoe, eachuserhas their ownuser space toperform labellingaccording to their expertisewhile

sharing the same set of syllables. Normally this could prevent collaboration as their labelling

results are isolated from other experts. Koe solves this issue by allowing labelling data to be

viewed and shared betweenmembers of a database.

Figure 6.6 shows two control panels where these action can take place. InUnit table page, the

user can choose to view the same unit table but with other team member’s label data instead

96

(a)View label data by other teammembers
(b) Import label data from other team

members

Figure 6.6: Control panels where label data from other teammembers can be viewed in Unit table
(Sub-figure 6.6a) or imported (Sub-figure 6.6b) via a saved file inDatabase management

of their own. �is requires no special permission, however in this mode, editing is disabled

regardless of the permission the user is granted. Label data automatically updates when the

other teammembermakes amodification. In order to makemodification, for example to cor-

rect mistakes, label data from other teammember must first be copied into the current user’s

workspace. �is functionality is provided in Database management page and requires at least

Import data permission and a ZIP file containing the label data, which can only be acquired by

asking the author of the label set to make a save. �is viewing/sharing process might be more

convoluted than teammembers sharing their login, however it is the way that Koe honours the

intellectual properties of its users. It is worthmentioning that in Koe, the user owns their data

in all forms, despite the fact that Koe is free.

6.5 Case study: Validating classification with independent la-

belling

In this section I present a case study to demonstrate the usefulness of Koe in multi-expert la-

belling and label validation. In collaboration with Dr. Wesley Webb, we harnessed the citizen

science potential ofKoe to evaluate inter-observer reliability, using 74 judges (to our knowledge

the largest number of judges yet used). From our labelled dataset of 22,000 bellbird syllables,

97

we constructed a subset database of 200 syllables in Koe. �e 200 syllables consisted of 18 label

classes from two populations (Tawharanui and Tiritiri Matangi), with 3-20 of each class, in-

cluding 4 “other” syllables that did not match the exemplars. (�e classes and numbers of each

class were chosen randomly.) �e 74 judges (all naïve to Koe, to spectrograms in general, and to

bellbird song) createdKoe accounts andwere grantedonline access to thedatabase. Judgeswere

asked to label the syllables using the unit table by comparing against labelled class exemplars in

a separate tab. �eywere told there were 3–20 of each class, and 3–20 “other” syllables that did

not match the exemplars. Each judge worked independently to label the set of syllables over a

1–2 hour period. Afterwards, labels from all judges were retrieved and compiled. For each of

the 200 syllables, the percentage of judges whose label matched our own label was calculated:

average 89.6%; median 95.6%. �is is a high degree of agreement for inter-observer reliability

studies (Nelson, Hallberg, et al. 2004; Parker et al. 2012), lending validity to ourmanual classi-

fication.

6.6 Conclusions

In this chapter I present different ways Koe facilitates rapid manual classification. �is is ar-

guably one of the most powerful tools that Koe has to offer. It is unique to Koe and does not

exist in any existing software solutions for bioacoustics processing. In chapter 7 that follows, I

present another tool that is unique to Koe: sequence analysis.

98

CHAPTER 7

SEQUENCE ANALYSIS

7.1 Introduction

Syntax refers to the set of rules governing song structure (how individual vocalisation units are

strung together to form a sequence) (Robert F. Lachlan et al. 2013). It can be used as the pri-

mary basis for species recognition when acoustic properties at syllable-level are insufficient,

i.e. when there aremultiple birds in the same habitat that share similar vocalisation character-

istics. An example of this is the New Zealand bellbird (Anthornis melanura) and the Tui (Prosthe-

madera novaeseelandiae), these two species make similar syllables that can be hard to tell apart

without hearing the whole song.

Most birdsong has limited set of syntax rules which are primitive compared to human lan-

guages (Berwick et al. 2011). Whereas syntax of a human language is a very broad term that in-

cludes word order, grammatical relations, hierarchical sentence structure, subject-verb agree-

ment, etc, syntax of birdsong is simply the temporal arrangements of vocalisation units (e.g.

syllables) that appear with certain frequency in the repertoire. �ere is much debate about

the complexity of syntax birds recognise. Kershenbaum, Bowles, et al. (2014) studies several

species of animal and found that they can only recognise the repetition of syllables. In contrast,

C.K. Adi (2008) andKatahira et al. (2011) found that Bangalese finch syntax exhibits high-order

context-dependency (themeaning of one syllable depends on what comes before it). �is find-

ingwas later supportedby ananalysis of the auditorial response inBengalesefinches brain (Abe

andWatanabe 2011), but Beckers et al. (2012) argues that the claim is premature and the results

99

can be explained by simple acoustic similarity matching. Koe caters to this wide variation of

syntax models by focusing on the discovery of repeated subsequences, where a subsequence

can be a string of the same syllable or a group of syllables that frequently follow each other in

the same order.

7.2 Syntax discovery via sequence structure

Inanextensive reviewofacoustics sequences inanimals,Kershenbaum,Blumstein, et al. (2016)

generalised from previous studies six paradigms for information encoding using sequence

structure. Table 7.1 showsfiveparadigms that canbe found in songsofone individual. Paradigm

overlapping is specific to duets between two individuals whereasKoe only analyses on individual

basis, therefore it is omitted here.

Table 7.1: Five paradigms for individual-level information encoding using sequence structure
Kershenbaum, Blumstein, et al. (2016)

Type Description Visualisation

Repetition Single unit repeated more than once A A A A

Diversity A number of distinct units are present. Order is
unimportant

A B C D

Combination Set of units has different information from each
unit individually. Order is unimportant.

A A A B B C

Ordering Set of units has different information from each
unit individually. Order is important

A B C A C B

Timing Timing between units (often between different
individuals) conveys information

A B C A − B C

Koe further refined these five paradigms by considering that the order of units are impor-

tant, thus combining paradigms Diversity, Combination and Ordering into one which I simply

call Subsequence. What Kershenbaum, Blumstein, et al. (2016) didn’t address, however, is that

diverse sequences can also be repeated, often with certain time gap between each repeat, i.e.

the Subsequence A B C − A B C −− A B C contains three repeats of A B C with differ-

ent time gaps in between, which could be perceived as distinct from a single Subsequence A B

C .

Koe provides several ways to analyse sequence structure. For a manual process, the user can

have all song sequences that exist in the database displayed in a list and useKoe’s filtering func-

100

tion to narrow the list down to only those which contain a sequence. Koe also provides an auto-

mated process to automatically discover subsequences that appear at high frequency. Finally,

the results of this automated process are visualised using directed graph to aid visual inspec-

tion.

7.2.1 Manual examination of subsequence via filtering

Figure 7.1: In View all songs page, each segmented song is displayed in one row as a sequence of
syllables. Manual sequence analysis can be carried out by applying a filter. Here, the filter

sequence:"trill"-"dragon" is applied to narrow down only songs that contain Trill followed by
Dragon (highlighted).

Koe displays all song sequences inViewall songs page. Each song and the sequence of syllables

(ideally already labelled) are displayed on one row. �e user can narrow the list down to show

only songs that contain a certain subsequence of unit labels. Figure 7.1 shows an example of

this operation, where the filter is sequence:"trill"-"dragon". �e filter is case-insensitive

and based on regular expression (Regex, JavaScript flavour), thus it is possible to filter the table

based on their naming pattern; the user does not need to provide the exact match for their

subsequence. For example, if all "pipe"-like syllables (those that have monotonic frequency

content, thus appear on the spectrogram like a pipe) have name prefixed with "Pipe", a filter

sequence:"trill"-"Pipe.*"will show songs that have sequence that have a Trill followed by

any syllable that starts with Pipe, such as Trill→PipeLow;→PipeHigh etc.

101

7.2.2 Automated subsequence discovery usingN-gram

N-gram is the general term for a technique used in modelling sequence that obeys Markovian

properties, includinghumanspeechandbirdsongs,where inpracticeN is apredefinednumber

and is the length of the sequence that can bemodelled by theMarkov process. WhenN is 2, the

model is called bigram,where theprobability of eachunit depends solely on theunit that comes

before it, thus demonstrating first-order Markov properties. Similarly, 3-gram also called tri-

gram, is the model where the probability of each unit depends on the previous two units, and

so forth. Table 7.2 shows an example of subsequence extracted using N-gram with N ranges

from 1 to 3.

Table 7.2: Subsequences that can be extracted by N-grammodels. �e original sequence is shown in
the first row when N=∞. Separated syllables are subsequences of the original sequence when N=1.
Subsequent rows shows subsequences that can be extracted using bigram (N=2) and trigram (N=3)

N Subsequence∞ (original) A B C D

1 (separate syllables) A B C D

2 (bigram) A B B C C D

3 (trigram) A B C B C D

Bigram is widely used to study the repertoire complexity of a species, such is the Australian

pied butcherbird (Cracticus nigrogularis) (Janney et al. 2016); also see Smith (2014) for several

species including four birds. Specific applications of bigram and trigram to model sequence

structure include VanHeijningen et al. (2009), Tsai andXue (2014), Janney et al. (2016), Mathur

and Kumar (2017). N-gram is intuitive and simple to implement. In five paradigms shown in

Table 7.1, using N-gram can discover Repetition, Combination and Ordering. However, N-gram

does not take into account the time gap between units. Moreover, N-gram cannot discover any

pattern of subsequence that is longer than N units. Using a combination of N-grams with N

goes from 1 to infinity can solve this issue, however this increases computational cost substan-

tially.

N-gramwas initially built intoKoe, however it is now available only to advance userswho can

access the backend (viaDocker or source code). �is is becauseKoenowuses SPADE (Sequential

Pattern Discovery using Equivalence classes) (Zaki 2001) - amore sophisticated algorithm that

alleviates the aforementioned limitations.

102

7.2.3 Automated subsequence discovery using SPADE

�eproblemstatement of sequential patternminingwasfirst proposed byAgrawal andSrikant

(1995) and since then it has been an actively researched topic for more than two decades, ar-

guably due to its practical application for large retail businesses. Barcode technology and com-

puterised Point Of Sales (POS) have made it possible to collect and store massive amount of

sales data, a.k.a. basket data. A record of basket data contains the number of items a customer

bought, as well as timestamp and sometimes customer ID, particularly when a customer uses

a smart loyalty card or credit cards. Soon, retailers started to explore ways to mine this data

to study customer behaviour such as "x% of people who buy item A also buy item B" or "x% of

people who buy item A will buy item B within the next n transactions", in order to create item

bundles or run personalised promotions. �e similarity between sequential patterns in shop-

pingbehaviour and those in bioacoustics is obvious. �e samedatamining technique can apply

to explore patterns such as "there is an x probability that when syllable A is vocalised, syllable

B will follow". When applied to birdsongs, a syllable can be considered an item and a group of

syllables with small time gap in between can be considered one transaction.

SPADE is one of the newest algorithms proposed for sequential pattern mining. It is re-

ported to be several orders of magnitude faster than previously proposed algorithms by util-

ising temporal joins along with efficient lattice search techniques. In addition, SPADE also

providesways to account for the time gap between transactions, effectively allowing two trans-

actions that occur within a threshold to be merged into one. �is enhancement proves useful

to study vocalisation patterns when time gaps between syllables need to be taken into account.

To explain the use of SPADE for sequence analysis, consider a segmented and labelled song

sequence an ordered list of x acoustic units denoted asA→ B→ C→ · · ·→ X. A sequence

rule has two parts: a left and right side. �e rule states that when the left side occurs, the right

side follows: [Leftside]⇒ Rightside. For example, the rule [A→ B]⇒ C states that when

the sequence [A→ B] occurs,C comes next. �e left side can be a sequence of any length, but

in our implementation the right side is a single unit (see https://github.com/fzyukio/koe/wiki,

Mine Sequence Structure).

�e SPADE algorithm calculates three parameters which combine to indicate the credibility

of sequence rules. �ese parameters are Support, Confidence and Lift. �eir meanings are de-

103

https://github.com/fzyukio/koe/wiki

scribed in Table 7.3. Credible rules have a large confidence factor, a large level of support and a

value of lift greater than one, as defined below using the example rule, [A→ B]⇒ C.

Table 7.3:�ree parameters calculated by SPADE for each sequence

Parameter Meaning

Support �e proportion of songs in the database that contain the entire sequence
A→ B→ C at least once.

Confidence �e proportion of those songs containing A→ B that also contain
A→ B→ C.

Lift Ameasure of the strength of the association relative to chance. Lift is equal
to the confidence of the rule, divided by the proportion of songs contain-
ing the right side. �us it gives the ratio of (i) the proportion of songs with
A→ B that transition to C, versus (ii) the proportion of songs expected to
containA→ B→ C by chance association ofA→ B andC.

To demonstrate how these parameters are calculated, consider the ten songs shown in Fig-

ure 7.1 to be a population of songs. �e rule [Stutter→Waah(magpie)]⇒ Pipe(B6) has a

support of 0.4 since the entire sequence occurs in four of the 10 songs. �e rule has a confidence

of 0.8, because in four of the five songs that contain Stutter→Waah(magpie), the transi-

tion to Pipe(B6) occurs. �e proportion of songs with Pipe(B6) is 0.6, so the lift of this rule is

0.8/0.6 = 1.33. �at is, the association [Stutter→Waah(magpie)]⇒ Pipe(B6) occurs in

1.33 times as many songs as expected by chance association of [Stutter→Waah(magpie)]

and Pipe(B6).

�e Mine sequence structure under menu Syntax analysis provides a table of subsequences

and their SPADE parameters for the user’s selected database. Table 7.2 shows several sub-

sequences extracted from the database Bellbird_TMI. Similar to other tables, the user can

sort any column or combination of columns in ascending or descending order, as well as fil-

tering the table using certain criteria to find subsequences of interest. In the given exam-

ple, using filter support:>0.2; chainlength:>1, the results shows 8 subsequences that oc-

cur in 20% of the entire repertoire. �e table is further sorted by lift, such that first sequence

Cough(TMI+click)→Downsqueak(hook) is the one that has highest lift.

104

Figure 7.2: Table of subsequences and their SPADE parameters inMine sequence structure page. �e
subsequences are mined from the database Bellbird_TMI. Table is sorted descendingly by lift and
filtered to show only subsequences that have twomore syllables and have at least 20% support.

__PSEUDO_START__ and __PSEUDO_END__ are not syllables, but represent the start and end of a
song.

7.2.4 Analysis via visualisationwith networkmodels

Networks have long been used in cognitive science (see a review by Baronchelli et al. (2013)) to

study the complex structure and dynamics of cognitive and behavioral processes. �is line of

study first found its way into the study of birdsong through the pioneer work of Sasahara et al.

(2012), where each phrase type (similar to the notion of syllable in this thesis) can be viewed

as one node in a graph. �e transitions from one syllable type to another can be represented

by a connection between adjacent nodes. Figure 7.3 shows an example of a graph produced

for Koe users. Each node is depicted as a circle, the colour of a node indicates the prevalence

of the syllable it represents (the darker the more prevalent). �e arrows show the direction of

the connection between nodes, the thickness and colour of an arrow indicates the strength of

a connection (the thicker and darker, the higher the lift is). �e ovals on the top left of a node

indicates self-connection, or repetitiveness of the syllable. Red and blue lines connect a node

with the "start of song" and "end of song" pseudo node. In this example, we can observe that

songs often startwith a Stutter repeated several times, followedby aWaah(rough), Stutter(cheet),

orDowncurve(doublevoiced)_Chiup. �ere is a strong linkbetweenDowncurve(doublevoiced)_Chiup,

Stepdown_mid and Pipe(D#[7]), meaning that the three syllables sequence is frequently seen in

the repertoire.

Networks are useful for this line of study because they provide a high level overview of the

105

Figure 7.3: An example of a graph for a subset of syllables in Koe.

entire repertoire that can be visualised in one graph. Features extracted from the networks

can also be used for qualitative comparison between repertoires. Examples of recent studies

using networks are: Cody et al. (2015) who studied phrase sharing between individuals of the

California thrashers (Toxostoma redivivum), Zsebők et al. (2020) studied how song sequences

can encode individual’s specific characteristics in male collared flycatchers (Ficedula albicollis).

Beyond individuals, networks are also used to study song structures of one species, such as

by Opaev (2016) (studying the Grey-crownedWarbler Seicercus tephrocephalus), or compare song

structures of different populations of a species, such as Roach et al. (2012) (studying Hermit

�rush Catharus guttatus).

7.3 Implementation

7.3.1 SPADE

�eoriginal implementationofSPADEis inC++,which is available athttps://github.com/zakimjz/

SPADE. At the time that SPADEwas first contemplated to be used in Koe, there was no Python

implementation. �ere exists a package (Buchta et al. 2020) for the R language that provides

similar functionality of SPADE, which in theory can be called from Python, however there are

many disadvantages to this approach. First, R needs to be installed together with Python on

the server and in the Docker image, making the process much more complicated than hav-

106

https://github.com/zakimjz/SPADE
https://github.com/zakimjz/SPADE

ing Python alone. Second, Python code needs to provide input to R and retrieve the results

from R in the form of a text file, which severely degrades the performance when the input is

large. To overcome this issue, I wrote a Python wrapper using Cython that can make calls and

retrieve direct result from C++ code. �e original implementation by Zaki was also rewritten

entirely to enable memory sharing, as well as fixing various bugs related to memory manage-

ment. �is way the SPADE component can be preloaded and stay on the memory indefinitely,

enabling theMine sequence structure page to operate extremely fast. On a large database such as

Bellbird_TMI, it takes less than a second to mine and render all subsequences.

�e rewritten C++ code is publicly available at https://github.com/fzyukio/cspade-full, and

the Pythonwrapper is at https://github.com/fzyukio/python-cspade. Both versionswerewrit-

ten to be compatible with threemain operating systems and can be compiled without incident

as long as there is a suitable C++ compiler (GCC on Unix/Linux, Clang on Mac and Microsoft

Visual C++onWindows). python-cspade is also provided as an installable package (available at

https://pypi.org/project/pycspade/) for any python project using PIP, which is also themethod

of installation in Koe. Advanced users with access to the Docker image or source code do not

need to compile SPADE separately, as it is already built-in to the installation process.

7.3.2 Networks

Koe’s networks visualisation is implemented using the force-directed graphmodel in the D3.js

library (Bostock et al. 2011). Force-directed graphs are widely used to simulate molecular dy-

namics such as the gravity or repellent forces between particles. Although birdsong syllables

don’t have these dynamics, the force of the network is still useful to position the syllables aes-

thetically. InKoe, the force is proportionate to the lift of a link, such that a strong lift produces a

strong force, thus the syllables at both ends of a link are pulled closer together. In order to pre-

vent collision, nodes also have an inherent repellent force similar to how two co-sign particles

repel each other.

Data for the graph comes from two sources: all single-syllable subsequences are used to con-

struct individual nodes, and all two-syllable subsequences found in the SPADE table are used

to create links between connected nodes. Lift and supports are used to initialise the pull and

repellent forces for each link. Next, nodes and links are fetched into d3.forceSimulation to

107

https://github.com/fzyukio/cspade-full
https://github.com/fzyukio/python-cspade
https://pypi.org/project/pycspade/

draw circles (visualisation of nodes) and arrows (visualisation of links). Finally, the pull and

repellent forces are applied for the nodes to rearrange themselves. �e graph typically reaches

equilibrium in a few seconds, when the forces balance out and the nodes stop moving. �e

graph automatically updates when the table is filtered, giving the user freedom to analyse any

subset of subsequences. �is feature is particularly useful when the repertoire contains a large

number of distinct syllables, which can make the graph crowded. Users can interact with the

graph by using the mouse to move nodes around to rearrange the graph in a different equilib-

rium. �is is useful if the nodes are too crowded at the initial stable state.

Figure 7.4: Control panel in
Mine sequence structure page to
change graph parameters.

Koe provides a control panel on the left side of Mine sequence

structure page through which the user can change the initial pa-

rameters of the graph as they see fit. In addition to forces be-

tweennodes, thegraph inKoealso contains three external forces,

exerted through three pseudo nodes: the pseudo start node at

the beginning of a song, the pseudo end node at the end of a

song, and a centre node, situated at the top left, bottom right,

and centre of the graph, respectively. �e pseudo start and end

nodes can be used as part of the analysis, e.g. which syllables have strong tendency to come

at the beginning/end of a song, while the centre node is simply to position the graph better.

�e other controls such as repulsion, distance can be used to achieve better node separation

in cases where there are a small number of syllables tightly linked together or vice versa, the

default parameters in this case might lead to a graph that is too centric, or too separated.

7.4 Case studies: Evaluating song structure inNZ bellbirds

Toanalyse sequence structure indetail,Mine sequence structure shows the strength of association

between unit classes using the SPADE algorithm (Zaki 2001), and produces network visualisa-

tions. We used this to compare the sequence structure of male and female bellbird song on

Tiritiri Matangi Island, in the Hauraki Gulf, Auckland, New Zealand.

108

Table 7.4: Key features ofmale and female song structure as extracted by the SPADE algorithm.
Results for NZ bellbird males (389 songs comprised of 5305 syllables) and females (138 songs comprised
of 1884 syllables) recorded on Tiri between February 2013 and December 2015. Rule length is howmany
units constitute the association. Song count is howmany songs the association occurs in. See text for

definitions of support, confidence and lift.

Rule
length

Association rule Song
count

Supp-
ort

Confi-
dence

Lift

Male population

1 Dragon 201 0.52 — —
1 Cough(TMI+click) 156 0.40 — —
1 Downsqueak(hook) 135 0.35 — —

...
2 Cough(TMI+click)→Downsqueak(hook) 126 0.32 0.81 2.33
2 START→ Stutter 113 0.29 0.29 0.95
2 START→ Cough(TMI+click) 90 0.23 0.23 0.57
2 Dragon→ END 115 0.30 0.57 0.57
2 Moustache→ END 46 0.12 0.81 0.81
2 Cough(TMI+click)→ END 45 0.12 0.29 0.29

...
3 [Trill→Dragon]→Moustache 32 0.08 0.86 5.9

...
Female population

1 Stutter 129 0.93 — —
1 Chiup 82 0.59 — —
1 Downcurve(doublevoiced) 50 0.36 — —

...
2 START⇒ Stutter 125 0.91 0.91 0.97
2 Stutter⇒ Stutter 117 0.85 0.91 0.97
2 Stutter⇒ END 52 0.38 0.40 0.40
2 Downcurve(doublevoiced)⇒ Chiup 49 0.36 0.98 1.65

...
9 [Stutter → Stutter → Stutter → Stutter →

Stutter→ v→ Stutter→ Stutter]⇒ Stutter
21 0.15 0.75 0.80

...
11 [Stutter → Stutter → Stutter → Stutter →

Stutter → Stutter → Stutter → Stutter →
Stutter→ Stutter]⇒ Stutter

10 0.07 0.77 0.82

7.4.1 Using SPADE parameters

One-unit ‘associations’ show prevalence of syllable classes in the population. �e three most

prevalent classes for males are Dragon, Cough(TMI+click) and Downsqueak(hook), occurring in

52%, 40% and 35% ofmale songs, respectively. �e threemost prevalent female classes are Stut-

ter, Chiup andDowncurve(doublevoiced), occurring in 93%, 59% and 36% of female songs, respec-

109

tively. �e most prevalent male two-unit association, Cough(TMI+click)⇒ Downsqueak(hook),

occurs in 32% of songs. It has a confidence of 0.81; i.e. when Cough(TMI+click) occurs, Down-

squeak(hook) comes next in 81% of songs. It has a lift of 2.33; i.e. Downsqueak(hook) follows

Cough(TMI+click) in 2.33 times the number of songs as expected by chance. Male songmost of-

ten starts with Stutter (29% of songs) or Cough(TMI+click) (23%). It most often ends withDragon

(30%), Moustache (12%) or Cough(TMI+click) (12%). By contrast, for females, the importance of

Stutter is apparent. Not only does Stutter start in 91% of female songs, it also repeats (i.e. Stutter

→ Stutter) in 85% and ends in 38%. Furthermore, Stutter is commonly repeatedmany (11) times.

7.4.2 Using networks

Sexual dimorphism in two-unit sequences was examined at the population level with network

diagramswith a threshold of support> 0.05 (Figure 7.5). �e songs of both sexes contain some

nodes with many connections; these unit classes (e.g. Dragon in males, Stutter in females) can

bepreceded/followedbymanydifferent classes. Both sexes also containnodeswhich are always

preceded/followed by a certain class; for example, in malesWaah(mid+A) is always followed by

Dragon, and in femalesPeakwhistle(TMI) is always preceded by Stutter. Both sexes sing repeated

units, represented by looped lines. For males: Dragon, Stutter, and Cough(TMI+click). For fe-

males: Stutter, Stutter(wavey), Pipe(D#[7]+), and Pipe(E[7]). A notable difference in the female

network is the chain of strongly associated nodes: Killem→ Pipe(Csh[7]+)→ Upsqueak _Flat-

squeak(1)→Downsqueak(twopart)→Down_Click_Stepdown→ Stepdown(C[7]-C[6]).

7.5 Conclusion

�is chapter presents several methods of sequence analysis made available to the front-end

user. �is is typically the last step in an acoustics process and thus concludes the workflow that

Koewas create to facilitate.

110

Figure 7.5: Network visualisations ofmale and female song sequence structure.�e networks show
two-unit associations for (A) male and (B) female NZ bellbird song on Tiri. �e networks are produced
from the SPADE data in Table 7.4. Key features of male and female song structure as extracted by the
SPADE algorithm.. Each node represents a unit class. Colours of the nodes represent frequency of
occurrence, with darker, redder nodes being more frequently recorded classes. �e arrows show
directions of the association. �ickness and darkness of the arrows represent the strength of the

association. �e networks have been filtered to show only those associations that occur in more than
5% of songs. Classes that start or end in at least one instance are tethered to the START/END nodes,

respectively, with thin grey lines.

111

CHAPTER 8

CONCLUSIONS

Koe is an end-to-end solution for large-scale, high-resolution classification and analysis of an-

imal vocalisations. It features tools for segmenting, comparing and classifying acoustic units

and analysing sequence structure. Interactive ordination and unit tables provide a major ad-

vance in classification speed and robustness over existing methods. �e use of SPADE and in-

teractive force-directed graphs provides unmatched capability to perform sequence analysis

and pattern discovery even for large repertoires of syllable types. I have presented several case

studies to demonstrate the power of Koe at each step of the acoustics workflow. Koe was de-

signed primarily for taxa/questions requiring acoustic classification; however, Koe is not lim-

ited to such cases. Where classification is not the aim, e.g. in animalswhere vocalisations show

graded (non-discrete) variation, Koe is still a powerful tool for efficient extraction of measure-

ments, which can be exported for analysis. Being web-based and accessible from any device,

Koe is ideal for collaboration, teaching and citizen science.

8.1 Key contributions

Koe has been well-received after its release (see Fukuzawa, Webb, et al. (2020) for the official

publication) and is nowused by numerous researchers around theworld (at the time this thesis

is written, Koe is hostingmore than 2000 databases). �is thesis goes beyond the scope of doc-

umenting the design and functionality of a new software; each chapter in this thesis has aimed

to answer key scientific questions: a) is it sensible to automated this process? b) If so, what

112

algorithm can be used to automated the process? c) If not, what is the reasoning for retaining

manual process? By answering these questions, I have tried to establish from the computer sci-

encepoint of viewa standardbioacousticsworkflow that canbefine-tuned to theuser’s specific

targets and needs.

�e intended audience of this thesis is computer scientists and advanced users of Koe who

wish to customise and expand existing functionality of Koe to suit their needs. Expandability

has been the aim of Koe from its inception, as I have demonstrated throughout.

8.2 Futurework

Advanced users ofKoewill find an abundance of extra tools and features thatKoeprovides at the

backend, such as automated segmentation, automatic classification, recursive labelling based

on syntax analysis, various tools to import/export data to and from different sources. �ese

tools have not been made available to the front-end users due to the limitations of in-browser

computation, browser compatibility issues, but mostly due to the complexity of bringing ma-

chine learning to the browser. However, it is definitely possible to do so through libraries such

as Tensorflow JS (Smilkov et al. 2019), Essentia.js (Joglar-ongay and Serra 2020). High per-

formance at the client-side can be achieved by rewriting the computational core of Koe in We-

bAssembly (Webassembly Community Group 2020). It is worth mentioning that out of these

future endeavours, client-side automatic segmentation has already been implemented in the

most recent version of Koe and is undergoing quality assurance before releasing to the public.

Auto-encoder based feature extraction as presented in Section §5.3.2 has potential to greatly

simplify one of the most challenging steps of the workflow by eliminating the needs for trial-

and-error in feature selection. �e proof of concept as presented in this thesis proves very

promising, though considerable work is needed to incorporate auto-encoder into the feature

extraction step.

8.3 Data availability

All Koe users have automatic access to the Bellbirds_Case_Study database analysed in this

thesis. Ausermanual andstep-by-step tutorial to reproduceouranalyses is available at koe.io.ac.nz.

113

BIBLIOGRAPHY

Abe, K., & Watanabe, D. (2011). Songbirds possess the spontaneous ability to discriminate syntactic
rules.Nature neuroscience, 14(8), 1067–1074 (cited on page 99).

Acevedo, M. A., Corrada-Bravo, C. J., Corrada-Bravo, H., Villanueva-Rivera, L. J., & Aide, T. M. (2009).
Automated classification of bird and amphibian calls using machine learning: A comparison of
methods. Ecological Informatics, 4(4), 206–214 (cited on pages 68, 75).

Adi, C. K. (2008). Hidden Markov Model Based Animal Acoustic Censusing : Learning From Speech Processing
(Doctoral dissertation). Marquette University. (Cited on page 99).

Adi, K., Johnson, M. T., & Osiejuk, T. S. (2010). Acoustic censusing using automatic vocalization clas-
sification and identity recognition.�e Journal of the Acoustical Society of America, 127(May 2013),
874–883 (cited on pages 43, 70).

Agrawal, R.,&Srikant, R. (1995).Mining sequential patterns.Proceedings - InternationalConference onData
Engineering, 3–14 (cited on page 103).

Anderson, M. E., & Conner, R. N. (1985). Northern Cardinal Song in �ree Forest Habitats in Eastern
Texas.�eWilson Bulletin, 97(4), 436–449 (cited on page 88).

Bagshaw, P. C., Hiller, S. M., & Jack, M. A. (1993). Enhanced pitch tracking and the processing of f0
contours for computer aided intonation teaching. Proc. Eur.Conf. SpeechCommun., (September),
1003–1006 (cited on page 34).

Baker, M. C. [Myron C.], & Logue, D. M. (2003). Population differentiation in a complex bird sound: A
comparisonof threebioacoustical analysisprocedures.Ethology, 109(3), 223–242 (citedonpages68,
72, 74).

Baptista, L. F. [Luis F]. (1977). Geographic Variation in Song and Dialects of the Puget Sound White-
Crowned Sparrow.�eCondor, 79(3), 356–370 (cited on page 87).

Baptista, L. F. [Luis F.], & King, J. R. (1980). Geographical Variation in Song and Song Dialects of Mon-
taneWhite-Crowned Sparrows. Condor, 82(3), 267–284 (cited on pages 4, 87).

Barmatz, H., Klein, D., Vortman, Y., Toledo, S., & Lavner, Y. (2019). Segmentation and Analysis of Bird
Trill Vocalizations. 2018 IEEE InternationalConference on the Science of Electrical Engineering in Israel,
ICSEE 2018, 1–5 (cited on pages 44, 45).

Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., & Christiansen,M.H. (2013). Net-
works in Cognitive Science. Trends in Cognitive Sciences, 17(7), 348–360 (cited on page 105).

Baugh, A. T., Akre, K. L., & Ryan, M. J. (2008). Categorical perception of a natural, multivariate signal:
Mating call recognition in túngara frogs.Proceedings of theNationalAcademyof Sciences of theUnited
States of America (cited on page 7).

Beckers, G. J., Bolhuis, J. J., Okanoya, K., & Berwick, R. C. (2012). Birdsong neurolinguistics: Songbird
context-free grammar claim is premature.NeuroReport, 23(3), 139–145 (cited on page 99).

Berwick, R. C., Okanoya, K., Beckers, G. J. L., & Bolhuis, J. J. (2011). Songs to syntax: �e linguistics of
birdsong. Trends in Cognitive Sciences, 15(3), 113–121 (cited on pages 5, 36, 99).

Bhatia, R., Seth, H., & Rajan, P. (2019). Feature learning for bird-call segmentation using phase based
features. 2018 13th International Conference on Industrial and Information Systems, ICIIS 2018 - Pro-
ceedings, (978), 67–71 (cited on page 44).

114

Bicego, M., Murino, V., & Figueiredo, M. A. (2003). Similarity-based clustering of sequences using hid-
den markov models. Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Sci-
ence), 2734, 86–95 (cited on pages 71, 73).

Bioacoustics Research Program. (2011). Raven Pro: Interactive Sound Analysis Software (Version 1.1).
(Cited on page 6).

Bogert, B. P., Healy,M. J. R., & Tukey, J.W. (1963).�e quefrency alanysis of time series for echoes: Cep-
strum, pseudo-autocovariance, cross-cepstrumand saphe cracking.Proceedings of the symposium
on time series analysis, 15, 209–243 (cited on page 69).

Bostock, M., Ogievetsky, V., &Heer, J. (2011). D3 data-driven documents. IEEETransactions on Visualiza-
tion and Computer Graphics, 17(12), 2301–2309 (cited on page 107).

Boulmaiz, A.,Messadeg,D.,Doghmane,N.,&Taleb-Ahmed,A. (2016). Robust acoustic bird recognition
for habitat monitoring with wireless sensor networks. International Journal of Speech Technology,
19(3), 631–645 (cited on pages 70, 71).

Briggs, F., Lakshminarayanan, B., Neal, L., Fern, X. Z., Raich, R., Hadley, S. J. K., Hadley, A. S., & Betts,
M. G. (2012). Acoustic classification of multiple simultaneous bird species: A multi-instance
multi-label approach.�e Journal of the Acoustical Society of America, 131(6), 4640 (cited on page 72).

Briggs, F., Raich, R., & Fern, X. Z. (2009). Audio classification of bird species: A statistical manifold ap-
proach.Proceedings - IEEEInternationalConference onDataMining, ICDM, 51–60 (cited onpages 71,
72).

Brumm,H., & Slabbekoorn, H. (2005). Acoustic Communication in Noise. Advances in the Study of Behav-
ior, 35(05), 151–209 (cited on page 4).

Buchta, C., Hahsler, M., Diaz, D., Buchta, M. C., & Zaki, M. J. (2020). Package arulesSequences. (Cited
on page 106).

Cai, J., Ee, D., Pham, B., Roe, P., & Zhang, J. (2007). Sensor Network for the Monitoring of Ecosystem:
Bird Species Recognition. 2007 3rd International Conference on Intelligent Sensors, Sensor Networks
and Information, 293–298 (cited on page 70).

Chen,G., Parada,C.,&Sainath,T.N. (2015).Query-by-examplekeyword spottingusing long short-term
memory networks. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing
- Proceedings, 2015-Augus, 5236–5240 (cited on page 75).

Chen, I. F., & Lee, C.H. [ChinHui]. (2013). AHybridHMM/DNNapproach to keyword spotting of short
words. Proceedings of the Annual Conference of the International SpeechCommunicationAssociation, IN-
TERSPEECH, (August), 1574–1578 (cited on page 75).

Chen,W. P., Chen, S. S., Lin, C. C., Chen, Y. Z., & Lin,W. C. (2012). Automatic recognition of frog calls
using a multi-stage average spectrum. Computers andMathematics with Applications, 64(5), 1270–
1281 (cited on page 74).

Chen, Z., &Maher, R. C. (2006). Semi-automatic classification of bird vocalizations using spectral peak
tracks.�e Journal of the Acoustical Society of America, 120(5), 2974 (cited on pages 43, 68, 74).

Chiba, T., & Kajiyama, M. (1958).�e vowel: Its nature and structure (Vol. 652). Phonetic society of Japan
Tokyo. (Cited on page 38).

Chou, C. H., & Ko, H. Y. (2011). Automatic birdsong recognition with MFCC based syllable feature ex-
traction. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 6905 LNCS, 185–196 (cited on pages 46, 71, 89).

Chou, C.H., & Liu, P. H. (2009). Bird species recognition bywavelet transformation of a section of bird-
song. UIC-ATC 2009 - Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing in
Conjunction with the UIC’09 and ATC’09 Conferences, 189–193 (cited on pages 46, 70).

Chou, C. H., Liu, P. H., & Cai, B. (2008). On the studies of syllable segmentation and improvingMFCCs
for automatic birdsong recognition.Proceedings of the 3rd IEEEAsia-PacificServicesComputingCon-
ference, APSCC 2008, 745–750 (cited on page 46).

Chu,W.,&Blumstein,D. T. (2011).Noise robust bird songdetectionusing syllable pattern-basedhidden
Markov models, 345–348 (cited on page 72).

Chung, Y. A., Wu, C. C., Shen, C. H., Lee, H. Y., & Lee, L. S. (2016). Audio Word2Vec: Unsupervised
learning of audio segment representations using sequence-to-sequence autoencoder. Proceed-

115

ings of the Annual Conference of the International Speech Communication Association, INTERSPEECH,
08-12-Sept, 765–769 (cited on page 75).

Cody,M. L., Stabler, E., SánchezCastellanos,H.M.,&Taylor, C. E. (2015). Structure, syntax and “small-
world” organization in the complex songs of California�rashers (Toxostoma redivivum).Bioa-
coustics, 25(1), 41–54 (cited on page 106).

Comon,P. (1994). Independent component analysis, anewconcept?Signalprocessing, 36(3), 287–314 (cited
on page 26).

Cooley, J.W., & Tukey, J.W. (1965). An Algorithm for theMachine Calculation of Complex Fourier Series.
Mathematics of Computation (cited on page 33).

Dahlin, C. R., &Wright, T. F. (2012). Duet function in the yellow-naped amazon, Amazona auropalliata:
Evidence from playbacks of duets and solos. Ethology, 118(1), 95–105 (cited on page 3).

Deng, L., Seltzer, M., Yu, D., Acero, A., Mohamed, A., Hinton, G., &Way, O. M. (2010). Binary Coding
of Speech SpectrogramsUsing aDeepAuto - encoder. Interspeech, (September), 1692–1695 (cited
on page 48).

Derégnaucourt, S., Mitra, P. P., Fehér, O., Pytte, C., & Tchernichovski, O. (2005). How sleep affects the
developmental learning of bird song.Nature, 433(7027), 710–6 (cited on pages 4, 68, 89).

der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E.,
& Yu, T. (2014). scikit-image: image processing in Python. PeerJ, 2, e453 (cited on page 16).

Dooling,R.,Brittan-Powell,E., Lauer,A.,Dent,M.,&Noirot, I. (2005).�eproblemof frequencyweight-
ing functions and standards for birds.�e Journal of the Acoustical Society of America, 118(3), 2018
(cited on page 42).

Dooling, R. J. (2004). Audition: can birds hear everything they sing? Nature’s music (pp. 206–225). Else-
vier. (Cited on page 37).

Dooling,R. J., Zoloth, S.R.,&Baylis, J. R. (1978). Auditory sensitivity, equal loudness, temporal resolving
power, and vocalizations in the house finch (Carpodacus mexicanus). Journal of Comparative and
Physiological Psychology, 92(5), 867–876 (cited on page 42).

Doupe, A. J., &Kuhl, P. K. [PK]. (1999). Birdsong and human speech: common themes andmechanisms.
Annual review of neuroscience, 22, 567–631 (cited on page 34).

Ehret, G., & Haack, B. (1981). Categorical perception of mouse pup ultrasound by lactating females.
Naturwissenschaften (cited on page 7).

Eimas, P. D., Siqueland, E. R., Jusczyk, P., & Vigorito, J. (1971). Speech perception in infants. Science,
171(3968), 303–306 (cited on page 3).

Evangelista, T. L., Priolli, T. M., Jr, C. N. S., Angelico, B. a., & a.a. Kaestner, C. (2014). Automatic Seg-
mentation of Audio Signals for Bird Species Identification. 2014 IEEE International Symposiumon
Multimedia, 223–228 (cited on page 74).

Fagerlund, S., & Harma, A. (2005). Parametrization of inharmonic bird sounds for automatic recogni-
tion. 13th European Signal Processing Conference (EUSIPCO ’05) (cited on page 74).

Fagerlund, S. [Seppo]. (2004). Automatic Recognition of Bird Species by �eir Sounds. Department of
Electrical and Communications Engineering\nLaboratory of Acoustics and Audio Signal Processing, 56
(cited on page 74).

Fagerlund, S. [Seppo]. (2007). Bird species recognition using support vector machines. Eurasip Journal
on Advances in Signal Processing, 2007 (cited on pages 70–72, 74).

Fodor, G. (2013). �e Ninth Annual MLSP Competition: First place. IEEE International Workshop on Ma-
chine Learning for Signal Processing,MLSP, 1–2 (cited on pages 46, 70).

Fox, E. J. S. (2008). Call-independent identification in birds (Doctoral dissertation). (Cited on pages 43, 71).
Francisco, S., Slabbekoorn, H., & Smith, T. B. (2002). Habitat-Dependent Song Divergence in the Lit-

tle Greenbul : an Analysis of Environmental Selection Pressures on Acoustic Signals. Evolution;
international journal of organic evolution, 56(9), 1849–1858 (cited on page 4).

Franzen, A., & Gu, I. Y. (2003). Classification of bird species by using key song searching: a comparative
study. IEEE International Conference on Systems, Man and Cybernetics., 1, 880–887 vol.1 (cited on
pages 43, 68).

116

Fukuzawa, Y., Marsland, S., Pawley, M., & Gilman, A. (2017). Segmentation of harmonic syllables in
noisy recordings of bird vocalisations. International Conference Image and Vision Computing New
Zealand (cited on page 47).

Fukuzawa, Y., Webb, W. H., Pawley, M. D., Roper, M. M., Marsland, S., Brunton, D. H., & Gilman, A.
(2020). Koe: Web-based software to classify acoustic units and analyse sequence structure in
animal vocalizations.Methods in Ecology and Evolution, 11(3), 431–441 (cited on page 112).

Gil, D., & Slater, P. J. B. [Peter J B]. (2000). Song organisation and singin patterns of the willowwarbler,
Phylloscopus trochilus. Behaviour, 137, 759–782 (cited on page 89).

Goller, F., & Larsen, O. N. [Ole N.]. (1997). A new mechanism of sound generation in songbirds. Pro-
ceedings of theNational Academy of Sciences of theUnited States of America, 94(December), 14787–14791
(cited on page 39).

Graciarena, M., Delplanche, M., Shriberg, E., Stolcke, A., & Ferrer, L. (2010). Acoustic front-end opti-
mization for bird species recognition. ICASSP, IEEE International Conference on Acoustics, Speech
and Signal Processing - Proceedings, 293–296 (cited on page 70).

Greenwood, D. D. (1990). A cochlear frecuency-position function for several species–29 years later. Jasa,
87(6), 2592–2605 (cited on page 38).

Große Ruse,M., Hasselquist, D., Hansson, B., Tarka,M., & Sandsten,M. (2016). Automated analysis of
song structure in complex birdsongs. Animal Behaviour, 112, 39–51 (cited on pages 45, 88).

Gunasekaran,S.,&Revathy,K. (2010).Content-BasedClassificationandRetrieval ofWildAnimalSounds
Using Feature Selection Algorithm.Machine Learning and Computing (ICMLC), 2010 Second Inter-
national Conference on (cited on page 70).

Harma, A. [Aki]. (2003). Automatic identification of bird species based on sinusoidal modeling of sylla-
bles. IEEE International Conference on Acoustics, Speech, and Signal Processing, 5 (cited on pages 46,
48).

Hermansky, H. (1990). Perceptual linear predictive (PLP) analysis of speech.�e Journal of the Acoustical
Society of America, 87(4), 1738–52 (cited on page 41).

Hess,W. (1983). Pitch determination of speech signals: algorithms and devices (1st ed.). Springer-Verlag Berlin
Heidelberg. (Cited on page 67).

Hess, W. J. (1992). Pitch and voicing determination. Advances in speech signal processing, 3–48 (cited on
page 67).

Hirschberg, J., & Manning, C. D. (2015). Advances in natural language processing. Science, 349(6245),
261–266 (cited on page 4).

Howard, R. (1999). Principles of Animal Communication (Vol. 45). (Cited on page 3).
Inc., P. T. (2015). Collaborative data science. (Cited on page 93).
Ito, K.,Mori, K.,& Iwasaki, S.-i. (1996). Application of dynamic programmingmatching to classification

of budgerigar contact calls.�e Journal of the Acoustical Society of America, 100(6), 3947–3956 (cited
on page 68).

Jancovic, P., Kokuer, M., Zakeri, M., & Russell, M. (2013). Unsupervised discovery of acoustic patterns
in bird vocalisations employing DTW and clustering. 21st European Signal Processing Conference
(EUSIPCO 2013), 1–5 (cited on page 68).

Janney, E., Taylor, H., Scharff, C., Rothenberg, D., Parra, L. C., & Tchernichovski, O. (2016). Temporal
regularity increases with repertoire complexity in the Australian pied butcherbird’s song. Royal
Society Open Science, 3(9) (cited on page 102).

Jinnai, M., Boucher, N., Fukumi, M., & Taylor, H. (2012). A new optimization method of the geometric
distance inanautomatic recognitionsystemforbirdvocalisations. InSociétéFrancaised’Acoustique
(Ed.), Acoustics (pp. 2439–2445). (Cited on page 45).

Joglar-ongay, L., & Serra, X. (2020). Essentia . Js : a Javascript Library forMusic and Audio. (May), 605–
612 (cited on page 113).

Jones, A. E., Ten Cate, C., & Bijleveld, C. C. (2001).�e interobserver reliability of scoring sonagrams by
eye: A study onmethods, illustrated on zebra finch songs.AnimalBehaviour, 62(4), 791–801 (cited
on pages 8, 28).

Jones, E., Oliphant, T., & Peterson, P. (2014). SciPy: open source scientific tools for Python. (Cited on
pages 15, 80).

117

Juang, C. F., & Chen, T. M. (2007). Birdsong recognition using prediction-based recurrent neural fuzzy
networks.Neurocomputing, 71(1-3), 121–130 (cited on page 70).

Kaewtip, K., Tan, L. N., Alwan, A., & Taylor, C. E. (2013). A robust automatic bird phrase classifier using
dynamic time-warpingwith prominent region identification. ICASSP, IEEE International Confer-
ence on Acoustics, Speech and Signal Processing - Proceedings, 768–772 (cited on pages 47, 53).

Kaewtip, K., Tan, L. N., Taylor, C. E., & Alwan, A. (2015). Bird-phrase segmentation and verification: A
noise-robust template-based approach. 2015 IEEE International Conference onAcoustics, Speech and
Signal Processing (ICASSP), 758–762 (cited on page 47).

Kahl, S., Stöter, F. R., Goëau, H., Glotin, H., Planqué, R., Vellinga, W. P., & Joly, A. (2019). Overview of
BIRDCLEF2019: Large-scale bird recognition in soundscapes.CEURWorkshopProceedings, 2380,
9–12 (cited on page 43).

Kamper,H.,Wang,W.,&Livescu, K. (2016).Deep convolutional acousticword embeddings usingword-
pair side information. ICASSP, IEEE International Conference onAcoustics, Speech and Signal Process-
ing - Proceedings, 2016-May, 4950–4954 (cited on page 75).

Katahira, K., Suzuki, K., Okanoya, K., & Okada, M. (2011). Complex sequencing rules of birdsong can
be explained by simple hiddenMarkov processes. PLoSONE, 6(9) (cited on page 99).

Kedem, B. (1986). Spectral Analysis andDiscrimination by Zero-Crossings. Proceedings of the IEEE, 74(11),
1477–1493 (cited on page 66).

Kershenbaum, A., Blumstein, D. T., Roch, M. A., Backus, G., Bee, M. A., Bohn, K., Cao, Y., Carter, G.,
Cäsar, C., Coen,M.,Deruiter, S. L., Doyle, L., Edelman, S., Ferrer-i-cancho, R., Freeberg, T.M.,
Garland, E. C., Gustison,M.,Harley,H. E.,Huetz, C., . . . Zamora-gutierrez, V. (2016). Acoustic
sequences in non-human animals : a tutorial review and prospectus.Biological Reviews, 91(1), 13–
52 (cited on pages 8, 28, 36, 100).

Kershenbaum, A., Bowles, A. E., Freeberg, T. M., Jin, D. Z., Lameira, A. R., & Bohn, K. (2014). Animal
vocal sequences: not the Markov chains we thought they were. Proceedings of the Royal Society B:
Biological Sciences, 281(1792), 20141370 (cited on page 99).

Kershenbaum, A., Déaux, É. C., Habib, B., Mitchell, B., Palacios, V., Root-Gutteridge, H., & Waller, S.
(2018). Measuring acoustic complexity in continuously varying signals: how complex is a wolf
howl? Bioacoustics, 27(3), 215–229 (cited on page 3).

Kershenbaum, A., Ilany, A., Blaustein, L., & Geffen, E. (2012). Syntactic structure and geographical di-
alects in the songs of male rock hyraxes. Proceedings of the Royal Society of London B: Biological Sci-
ences, 279(1470), 2974–2981 (cited on page 3).

Kim,H.G.,Moreau,N.,&Sikora,T. (2006).MPEG-7AudioandBeyond:AudioContent IndexingandRetrieval.
(Cited on page 67).

Kogan, J. A., & Margoliash, D. (1998). Automated recognition of bird song elements from continuous
recordings using dynamic time warping and hidden Markov models: A comparative study.�e
Journal of the Acoustical Society of America, 103(4), 2185–2196 (cited on page 72).

Koops, H. V., Balen, J. V., & Wiering, F. (2014). A Deep Neural Network Approach to the LifeCLEF 2014
Bird task. CLEF2014Working Notes, 1180, 634–642 (cited on pages 46, 70, 74).

Koops, H. V., Balen, J. V., & Wiering, F. (2015). Automatic Segmentation and Deep Learning of Bird
Songs. Experimental IR Meets Multilinguality, Multimodality, and Interaction, 9283, 261–267 (cited
on page 46).

Köppl, C., Gleich, O., & Manley, G. A. (1993). An auditory fovea in the barn owl cochlea. Journal of Com-
parative Physiology A, 171(6), 695–704 (cited on page 38).

Kuhl, P. K. [P. K.]. (2003).Human speech andbirdsong: Communication and the social brain.Proceedings
of the National Academy of Sciences, 100(17), 9645–9646 (cited on page 34).

Kuhl, P. K. [Patricia K]. (1989). On babies, birds, modules, andmechanisms: A comparative approach to
the acquisition of vocal communication.�e comparative psychology of audition: Perceiving complex
sounds. (Cited on page 34).

Kwan, C., Mei, G., Zhao, X., Ren, Z., Xu, R., Stanford, V., Rochet, C., Aube, J., & Ho, K. C. (2004). Bird
classification algorithms: theory and experimental results. Acoustics, Speech, and Signal Process-
ing, 2004. Proceedings. (ICASSP ’04). IEEE International Conference on, 5, V–289–92 vol.5 (cited on
page 70).

118

Lachlan, R. F. [R F]. (2007). Luscinia: a bioacoustics analysis computer program. Version 1.0. Computer
program].Retrieved fromhttps://github.com/rflachlan/Lusciniaon21stSeptember2016 (citedonpages6,
82).

Lachlan, R. F. [Robert F.], Verzijden, M. N., Bernard, C. S., Jonker, P. P., Koese, B., Jaarsma, S., Spoor,
W., Slater, P. J., & Ten Cate, C. (2013). �e progressive loss of syntactical structure in bird song
along an Island colonization chain. Current Biology, 23(19), 1896–1901 (cited on pages 29, 99).

Lachlana, R. F., &Nowickia, S. (2015). Context-dependent categorical perception in a songbird. Proceed-
ings of the National Academy of Sciences of the United States of America (cited on pages 5, 7).

Lakshminarayanan, B., Raich, R., & Fern, X. Z. (2009). A Syllable-Level Probabilistic Framework for
Bird Species Identification. Eighth International Conference on Machine Learning and Applications,
Proceedings, 53–59 (cited on pages 45, 70, 75).

Larsen, O. N. [Ole N], & Goller, F. (1999). Role of syringeal vibrations in bird vocalizations. (May) (cited
on page 39).

Lasseck, M. (2013). Bird song classification in field recordings: Winning solution for NIPS4B 2013 com-
petition. Proc. of int. symp. Neural Information Scaled ..., 1–6 (cited on pages 46, 72).

Lasseck,M. (2015). Improved Automatic Bird Identification throughDecision Tree based Feature Selec-
tion and Bagging.Working notes of CLEF 2015 conference (cited on pages 70, 72).

Lasseck,M. (2016). ImprovingBird IdentificationusingMultiresolutionTemplateMatching andFeature
Selection during Training.WorkingNotes of CLEF Conference (cited on page 70).

Lee, C. H. [Chang Hsing], Han, C. C., & Chuang, C. C. (2008). Automatic Classification of Bird Species
From �eir Sounds Using Two-Dimensional Cepstral Coefficients. IEEE Transactions on Audio,
Speech, and Language Processing, 16(8), 1541–1550 (cited on page 43).

Lee, C. H. [Chang Hsing], Lee, Y. K., & Huang, R. Z. (2006). Automatic recognition of birdsongs using
mel-frequency cepstral coefficients.Proceedings of the InternationalMultiConference ofEngineers and
Computer Scientists, 1(1), 17–23 (cited on pages 46, 70, 71).

Levin,K.,Henry,K., Jansen,A.,&Livescu,K. (2013). Fixed-dimensional acoustic embeddingsof variable-
length segments in low-resource settings. Asru, 410–415 (cited on page 75).

Li, T., Ogihara, M., & Li, Q. (2003). A comparative study on content-based music genre classification.
Proceedings of the 26th annual international ACM SIGIR conference on Research and development in in-
formaion retrieval SIGIR 03, 15(5), 282 (cited on page 68).

Maas, A. L., Miller, S. D., O’Neil, T. M., Ng, A. Y., & Nguyen, P. (2012). Word-level Acoustic Modeling
with Convolutional Vector Regression. ICMLWS on Representation Learning (cited on page 75).

Manley, G. a., Brix, J., & Kaiser, a. (1987). Developmental stability of the tonotopic organization of the
chick’s basilar papilla. Science (New York, N.Y.), 237(4815), 655–656 (cited on page 38).

Marler, P. [P.]. (1970). Birdsongand speechdevelopment: could therebeparallels?AmericanScientist (cited
on page 34).

Marler, P., & Slabbekoorn, H.W. (2004). Nature’s Music.�eScience of Birdsong, 1, 513 (cited on page 3).
Mathur, P., & Kumar, A. (2017). Ethological DataMining of Bengalese Finch ’ s andWhite- RumpedMu-

nia ’ s Song. 2017 13th International Conference onNatural Computation, Fuzzy Systems and Knowledge
Discovery (ICNC-FSKD), 2306–2311 (cited on page 102).

May, B., Moody, D. B., & Stebbins,W. C. (1989). Categorical Perception Of Conspecific Communication
Sounds By Japanese Macaques. Macaca Fuscata. Journal of the Acoustical Society of America (cited
on page 7).

Mcfee, B., Raffel, C., Liang, D., Ellis, D. P. W., Mcvicar, M., Battenberg, E., & Nieto, O. (2015). librosa:
Audio and Music Signal Analysis in Python. PROC. OF THE 14th PYTHON IN SCIENCE CONF
(cited on pages 15, 16, 80).

Mitrović,D., Zeppelzauer,M.,&Breiteneder,C. (2006).DiscriminationandRetrieval ofAnimal Sounds.
�e 12th InternationalMulti-MediaModelling Conference, 00, 339–343 (cited on page 70).

Mitrović, D., Zeppelzauer, M., & Breiteneder, C. (2010). Features for Content-Based Audio Retrieval.
Advances in Computers, 78(10), 71–150 (cited on page 64).

Nanayakkara, S. C., Chitre, M., Ong, S., & Taylor, E. (2007). Automatic Classification of Whistles Pro-
duced by Indo-PacificHumpback Dolphins (Sousa chinensis).OCEANS2007 - Europe, 1–5 (cited
on page 75).

119

Neal, L., Briggs, F., Raich, R., & Fern, X. Z. (2011). Time-Frequency Segmentation of Bird Song in Noisy
Acoustic Environments. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing - Proceedings, 2012–2015 (cited on pages 47, 53).

Nelson, D. A., Hallberg, K. I., & Soha, J. A. (2004). Cultural evolution of Puget Sound white-crowned
sparrow song dialects. Ethology, 110(11), 879–908 (cited on pages 8, 28, 87, 98).

Nelson,D. A., &Marler, P. [Peter]. (1989). Categorical perception of a natural stimulus continuum: Bird-
song. Science (cited on page 7).

Nerbonne, J., & Heeringa,W. (2001). Computational Comparison and Classification of Dialects.Dialec-
tologia et Geolinguistica, 2001, 69–83 (cited on page 4).

Nowicki, S. (1987). Vocal tract resonances in oscine bird sound production: evidence from birdsongs in
a helium atmosphere.Nature, 325, 53–55 (cited on page 39).

Ondracek, J. M., & Hahnloser, R. H. R. (2013). Advances in Understanding the Auditory Brain of Song-
birds. Insights fromcomparativehearingresearch (pp. 347–388). SpringerNewYork. (Citedonpage45).

Opaev, A. (2016). Relationships between repertoire size and organization of song bouts in the Grey-
crowned Warbler (Seicercus tephrocephalus). Journal of Ornithology, 157(4), 949–960 (cited on
page 106).

O’Shaughnessy,D. (2000). SpeechCommunications:HumanandMachine. IEEEpress,Newyork, 367–433
(cited on page 40).

Ouattara, K., Lemasson, A., & Zuberbühler, K. (2009). Campbell’s monkeys concatenate vocalizations
into context-specific call sequences. Proceedings of the National Academy of Sciences of the United
States of America, 106(51), 22026–22031 (cited on page 3).

Pampalk, E., Rauber, A., & Merkl, D. (2002). Content-based organization and visualization of music
archives. Proceedings of the tenthACM international conference onMultimedia -MULTIMEDIA ’02, 570
(cited on page 41).

Papadopoulos, T.,Roberts, S.,&Willis,K. (2015).Detectingbird sound inunknownacoustic background
using crowdsourced training data, 1–8 (cited on page 45).

Parker, K. A., Anderson, M. J., Jenkins, P. F., & Brunton, D. H. (2012). �e effects of translocation-
induced isolation and fragmentation on the cultural evolution of bird song.Ecology Letters, 15(8),
778–785 (cited on pages 8, 28, 98).

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space.�eLondon, Edin-
burgh, andDublin philosophical magazine and journal of science, 2(11), 559–572 (cited on page 26).

Pedregosa, F., Varoquaux,G.,Gramfort, A.,Michel, V.,�irion,B.,Grisel,O., Blondel,M., Prettenhofer,
P.,Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.,
& Duchesnay, É. (2012). Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research (cited on page 16).

Podos, J., Peters, S., Rudnicky, T.,Marler, P., &Nowicki, S. (1992).�eOrganization of Song Repertoires
in Song Sparrows:�emes and Variations. Ethology, 90(2), 89–106 (cited on pages 88, 89).

Potamitis, I. (2015). Unsupervised dictionary extraction of bird vocalisations and new tools on assessing
and visualising bird activity. Ecological Informatics, 26(P3), 6–17 (cited on page 72).

Pozzi, L., Gamba, M., & Giacoma, C. (2010). �e use of artificial neural networks to classify primate
vocalizations: A pilot study on black lemurs. American Journal of Primatology, 72(4), 337–348 (cited
on page 74).

Priyadarshani,N. (2016).Wavelet-BasedBirdsongRecognition forConservation (Doctoral dissertation).Massey
University. (Cited on page 35).

Python Software Foundation. (2017). NumPy—NumPy. (Cited on page 15).
Qian, K., Zhang, Z., Ringeval, F., & Schuller, B. (2015). Bird sounds classification by large scale acous-

tic features and extreme learning machine. 2015 IEEEGlobal Conference on Signal and Information
Processing (GlobalSIP), 1317–1321 (cited on pages 45, 74).

Rabiner, L., & Sambur, M. (1974). An algorithm for determining the endpoint of isolated utterances.
AmericanTelephoneandTelegraphCompany,THEDELLSYSTEMTECHNICALJOCBSAL, 54(February)
(cited on page 45).

Raju, N., Mathini, S., Lakshmi Priya, T., Preethi, P., & Chandrasekar, M. (2012). Identifying the pop-
ulation of animals through pitch, formant, short time energy - A sound analysis. 2012 Interna-

120

tional Conference on Computing, Electronics and Electrical Technologies, ICCEET 2012, 704–709 (cited
on page 33).

Ranjard, L. (2009). Computational Biology of Bird Song Evolution (Doctoral dissertation). Auckland Univer-
sity. (Cited on pages 47, 53).

Ranjard, L., Anderson,M.G., Rayner,M. J., Payne, R. B.,McLean, I., Briskie, J. V., Ross,H. A., Brunton,
D.H.,Woolley, S.M.N.,&Hauber,M.E. (2010).Bioacoustic distancesbetween thebegging calls
of brood parasites and their host species: A comparison of metrics and techniques. Behavioral
Ecology and Sociobiology, 64(11), 1915–1926 (cited on pages 4, 68).

Ranjard, L., & Ross, H. A. (2008). Unsupervised bird song syllable classification using evolving neural
networks.�e Journal of the Acoustical Society of America, 123(6), 4358–4368 (cited on pages 36, 45,
70, 72, 89).

Riede, T., &Goller, F. (2010). Peripheralmechanisms for vocal production in birds - differences and sim-
ilarities to human speech and singing. Brain and Language, 115(1), 69–80 (cited on page 34).

Riede, T., Suthers, R. A., Fletcher, N. H., & Blevins,W. E. (2006). Songbirds tune their vocal tract to the
fundamental frequency of their song. Proceedings of the National Academy of Sciences of the United
States of America, 103(14), 5543–8 (cited on page 39).

Roach, S. P., Johnson, L., &Phillmore, L. S. (2012). Repertoire composition and singing behaviour in two
eastern populations of theHermit�rush (Catharus guttatus).Bioacoustics, 21(3), 239–252 (cited
on page 106).

Rothstein, S. I., & Fleischer, R. C. (2007). Vocal Dialects and �eir Possible Relation to Honest Status
Signalling in the Brown-Headed Cowbird.�eCondor (cited on page 4).

Ruiz-Muñoz, J. F., Orozco-Alzate, M., & Castellanos-Dominguez, G. (2015). Multiple instance learning-
based birdsong classification using unsupervised recording segmentation. IJCAI International
Joint Conference on Artificial Intelligence, 2015-Janua(Ijcai), 2632–2638 (cited on page 72).

Sahidullah, M., & Saha, G. (2012). Design, analysis and experimental evaluation of block based trans-
formation in MFCC computation for speaker recognition. Speech Communication, 54(4), 543–565
(cited on page 70).

Sainburg, T., �eilman, B., �ielk, M., & Gentner, T. Q. (2019). Parallels in the sequential organization
of birdsong and human speech.Nature Communications, 10(1), 3636 (cited on page 3).

Sarkar, A., Chabout, J., Macopson, J. J., Jarvis, E. D., & Dunson, D. B. (2018). Bayesian semiparamet-
ric mixed effects markov models with application to vocalization syntax. Journal of the American
Statistical Association, 113(524), 1515–1527 (cited on page 30).

Sasahara, K., Cody, M. L., Cohen, D., & Taylor, C. E. (2012). Structural Design Principles of Complex
Bird Songs: A Network-Based Approach. PLoSONE, 7(9) (cited on page 105).

Selin, A., Turunen, J., & Tanttu, J. T. (2007). Wavelets in recognition of bird sounds. Eurasip Journal on
Advances in Signal Processing, 2007 (cited on page 72).

Selouani, S.-A., Kardouchi, M., Hervet, É., & Roy, D. (2005). Automatic Birdsong Recognition Based
onAutoregressive Time-DelayNeural Networks. 2005 ICSCCongress onComputational Intelligence
Methods and Applications, 1–6 (cited on page 70).

Serban, I. V., Sordoni, A., Charlin, L., Pineau, J., Courville, A., & Bengio, Y. (2017). AHierarchical Latent
Variable Encoder-DecoderModel forGeneratingDialogues Iulian, 3295–3301 (cited on page 48).

Shannon, B. J., & Paliwal, K. K. (2003). A Comparative Study of Filter Bank Spacing for Speech Recog-
nition.Microelectronic Engineering Research Conference, 41, 310–312 (cited on pages 70, 71).

Shen, C. H., Sung, J. Y., & Lee, H. Y. (2018). Language Transfer of Audio Word2Vec: Learning Audio
Segment RepresentationsWithout Target Language Data. ICASSP, IEEE International Conference
on Acoustics, Speech and Signal Processing - Proceedings, 2018-April, 2231–2235 (cited on page 76).

Shiovitz, K. A. (1975). �e process of species-specific song recognition by the indigo bunting, Passerina
cyanea, and its relationship to the organization of avian acoustical behavior. Behaviour (cited on
page 36).

Skowronski,M.D.,&Harris, J. G. (2004). Exploiting independentfilter bandwidth of human factor cep-
stral coefficients in automatic speech recognition.�e Journal of the Acoustical Society of America,
116(3), 1774–1780 (cited on page 71).

121

Smilkov,D.,�orat,N.,Assogba,Y., Yuan,A.,Kreeger,N., Yu,P., Zhang,K.,Cai, S.,Nielsen,E., Soergel,
D., Bileschi, S., Terry, M., Nicholson, C., Gupta, S. N., Sirajuddin, S., Sculley, D., Monga, R.,
Corrado, G., Viégas, F. B., & Wattenberg, M. (2019). TensorFlow.js: Machine Learning for the
Web and Beyond (cited on page 113).

Smith, R. (2014). Complexity in animal communication: Estimating the size of N-gram structures. En-
tropy, 16(1), 526–542 (cited on page 102).

Soha, J. A., Nelson, D. A., & Parker, P. G. (2004). Genetic analysis of song dialect populations in Puget
Sound white-crowned sparrows. Behavioral Ecology, 15(4), 636–646 (cited on page 8).

Sokal, R. R. (1958). A statistical method for evaluating systematic relationships. Univ. Kansas, Sci. Bull.,
38, 1409–1438 (cited on page 27).

Solem, A. (2016). Celery - Distributed Task Queue—Celery 5.1.2 documentation. (Cited on page 79).
Somervuo, P., &Harma, A. [Aki]. (2004). Bird song recognition based on syllable pair histograms.Acous-

tics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP ’04). IEEE International Conference on,
5, V–825–8 vol.5 (cited on page 72).

Somervuo, P., Harma, A. [Aki], & Fagerlund, S. [Seppo]. (2006). Parametric representations of bird
sounds for automatic species recognition. IEEE Transactions on Audio, Speech and Language Pro-
cessing, 14(6), 2252–2263 (cited on pages 46, 70).

Specht, R. (2002). Avisoft-saslab pro: sound analysis and synthesis laboratory.Avisoft Bioacoustics, Berlin,
2002, 1–723 (cited on page 6).

Stowell, D., & Plumbley, M. D. (2014). Automatic large-scale classification of bird sounds is strongly
improved by unsupervised feature learning. PeerJ, 2, e488 (cited on pages 70, 74).

Sun, R., Marye, Y.W., & Zhao, H. A. (2013).Wavelet transform digital sound processing to identify wild
bird species. International Conference onWavelet Analysis and Pattern Recognition, 306–309 (cited on
page 70).

Tchernichovski, O. [O.], Lints, T. J., Derégnaucourt, S., Cimenser, A., & Mitra, P. P. (2004). Studying
the song development process: Rationale andmethods.Annals of theNewYorkAcademy of Sciences,
1016, 348–363 (cited on pages 4, 68, 89).

Tchernichovski,O. [Ofer],Nottebohm,F.,Ho,C.E., Pesaran,B.,&Mitra, P. P. (2000). Aprocedure for an
automatedmeasurement of song similarity. Animal behaviour, 59(6), 1167–1176 (cited on page 6).

TensorFlow. (2017). TensorBoard: Visualizing Learning. (Cited on page 16).
�ompson, N. S., LeDoux, K., & Moody, K. (1994). A System for Describing Bird Song Units. (Cited on

page 36).
Timoney, J., Lysaght, T., & Schoenwiesner, M. (2004). Implementing loudness models in matlab. Proc.

of the 7th Int. Conference on Digital Audio Effects (DAFX-04), (1), 5–9 (cited on page 41).
Tomback, D. F., & Baker,M. C. [Myron Charles]. (1984). Assortativemating by white-crowned sparrows

at song dialect boundaries. Animal Behaviour, 32(2), 465–469 (cited on page 8).
Tsai, W.-h., & Xue, Y.-z. (2014). On the Use of Speech Recognition Techniques to Identify Bird Species.

Computational Linguistics and Chinese Language Processing, 19(1), 55–68 (cited on page 102).
Vallejo, E. E., Cody, M. L., & Taylor, C. E. (2007). Unsupervised acoustic classification of bird species

usinghierarchical self-organizingmaps.Progress inArtificial Life, Proceedings, 4828, 212–221 (cited
on page 43).

Van Der Maaten, L., & Hinton, G. (2008). Visualizing Data using t-SNE. Journal of Machine Learning Re-
search (cited on pages 26, 90).

Van Heijningen, C. A., De Visser, J., Zuidema, W., & Ten Cate, C. (2009). Simple rules can explain dis-
crimination of putative recursive syntactic structures by a songbird species. Proceedings of the
NationalAcademyofSciences of theUnitedStates ofAmerica, 106(48), 20538–20543 (cited onpage 102).

Von Békésy, G., & Wever, E. G. (1960). Experiments in hearing (Vol. 8). McGraw-Hill New York. (Cited on
page 38).

Wang, N.-C., Hudson, R. E., Tan, L. N., Taylor, C. E., Alwan, A., & Yao, K. (2013). Bird-phrase seg-
mentation by entropy-driven change point detection. Electrical Engineering, 1, 773–777 (cited on
page 46).

Warblr. (2020). Warblr. (Cited on page 4).
Webassembly Community Group. (2020). WebAssembly Specification. 1 (cited on page 113).

122

Webb,W. H., Roper, M.M., Pawley, M. D., Fukuzawa, Y., Harmer, A. M., & Brunton, D. H. (2021). Sex-
ually distinct song cultures in a songbird metapopulation. bioRxiv (cited on pages 4, 87).

Wellock,C.D.,&Reeke,G.N. (2012).Quantitative tools for examining the vocalizationsof juvenile song-
birds. Computational Intelligence andNeuroscience, 2012 (cited on pages 4, 72).

Weninger, F., & Schuller, B. (2011). Audio recognition in the wild: Static and dynamic classification on
a real-world database of animal vocalizations. ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings, 337–340 (cited on page 70).

Westneat, M. W., Long, J. H., Hoese, W., & Nowicki, S. (1993). Kinematics of birdsong: functional cor-
relation of cranial movements and acoustic features in sparrows. Journal of Experimental Biology,
182, 147–171 (cited on page 39).

Wielgat, R., Zielinski, T. P., Potempa, T., Lisowska-Lis, A., & Król, D. (2007). HFCC based recognition
of bird species. Signal Processing: Algorithms, Architectures, Arrangements, and Applications, SPA 2007
-Workshop Proceedings, 129–134 (cited on page 70).

Wilbrecht, L., &Nottebohm, F. (2003). Vocal learning in birds and humans.Mental Retardation andDevel-
opmental Disabilities Research Reviews, 9(3), 135–148 (cited on page 45).

Williams, J. M., & Slater, P. J. B. [P. J B]. (1990). Modelling bird song dialects: the influence of repertoire
size and numbers of neighbours. Journal of�eoretical Biology, 145(4), 487–496 (cited on page 4).

Wyttenbach, R. A., May, M. L., & Hoy, R. R. (1996). Categorical perception of sound frequency by crick-
ets. Science (cited on page 7).

Ye, N. (2003).�eHandbook of DataMining. (Cited on page 72).
Yeh, Y.-c., Hsu, C.-y., & Yeh, Y.-c. (2019). Application of Auto-Encoder for Time Series Classification

with Class Imbalance (cited on pages 48, 76).
Zaki,M. J. (2001). SPADE: An efficient algorithm formining frequent sequences.Machine Learning, 42(1-

2), 31–60 (cited on pages 16, 29, 102, 108).
Zbancioc, M., & Costin, M. (2003). Using neural networks and LPCC to improve speech recognition.

SCS 2003 - International Symposium on Signals, Circuits and Systems, Proceedings, 2, 445–448 (cited
on page 70).

Zhao, Z., hua Zhang, S., yong Xu, Z., Bellisario, K., huaDai, N., Omrani, H., & Pijanowski, B. C. (2017).
Automated bird acoustic event detection and robust species classification.Ecological Informatics,
39(November 2016), 99–108 (cited on page 44).

Zsebők, S., Herczeg, G., Laczi, M., Nagy, G., Vaskuti, É., Hargitai, R., Hegyi, G., Herényi, M., Markó,
G., Rosivall, B., Szász, E., Szöllősi, E., Török, J., & Garamszegi, L. Z. (2020). Sequential orga-
nization of birdsong: relationships with individual quality and fitness. Behavioral Ecology, 1–12
(cited on page 106).

Zuidema,W., & de Boer, B. (2009).�e evolution of combinatorial phonology. Journal of Phonetics, 37(2),
125–144 (cited on page 3).

Zwicker, E. (1961). Subdivision of the audible frequency range into critical bands (Frequenzgruppen).
�e Journal of the Acoustical Society of America, 33(2), 248 (cited on page 40).

Zwicker, E., Flottorp,G.,&Stevens, S. S. (1957). Critical BandWidth in Loudness Summation.�eJournal
of the Acoustical Society of America, 29(5), 548–557 (cited on pages 37, 67).

123

	Overview
	Introduction
	Challenges
	A precise way to segment syllables using both visualisation and sound playback
	Syllables needs to be labelled in a flexible way, at different scales
	A method for collaborative work between experts in regards to syllable classification
	A user-friendly software that allows users to easily extend feature extraction capability

	Contribution
	Why Koe was written
	Outline of the thesis

	Design and functionality of Koe
	Introduction
	Languages, framework and libraries
	Koe as a webapp
	Data is stored in the backend and can be exported to the end user
	Koe's backend is implemented in Python to maximise extendability
	Libraries

	Database design
	Koe's database is designed to be user centred

	Front-end design and framework
	Koe workflow
	Front-end design
	Components of a page
	Extendability

	Functionalities of Koe
	Upload and segment recordings
	Extract acoustic features from units
	Classify units
	Interactive ordination plots
	Unit tables
	Class exemplars
	Classification granularity
	Validate classification through independent labelling

	Analyse sequence structure
	Filter songs by subsequence
	Discover and visualise vocal patterns using sequence rule mining

	Conclusions

	Background
	Basic concepts of Digital Signal Processing (DSP)
	Sounds are signals recorded as a function of time, but best represented as a function of time-frequency
	Analyse sounds in time-frequency
	Naive Fourier Transform: the maths
	Fast Fourier Transform: the practical implementation
	Short-Time Fourier Transform: the usage

	Sound production and perception in birds versus in humans
	Birds can produce two sounds at once, within a wide range of frequency
	Bird vocalisations are acoustic signals structured in time and frequency
	Birds perceive sounds differently from human

	Computational models based on sound production and perception
	Model of sound production: the source-filter model
	Model of frequency perception: non-linear filter-bank
	Model of loudness perception: Equal loudness contour

	Conclusions

	Syllable segmentation
	Introduction
	Manual segmentation in Koe
	Related work for automatic segmentation in birdsongs
	Procedural algorithms
	Endpoint detection in time using energy threshold: Harma method
	Boundary detection in time and frequency using image processing: Lasseck method

	Heuristic approaches
	Feed-forward Neural Network with fixed size input
	Recurrent Neural Network with variable size input

	Data and evaluation
	Data
	Evaluation
	Results

	Conclusion

	Feature representation
	Introduction
	Acoustic features
	Descriptive features
	Time domain features
	Frequency domain perceptual features
	Use of descriptive features in related work

	Abstract features
	Frequency domain physical features
	Cepstral domain features
	Use of abstract features in related work

	Feature length standardisation
	Aggregative methods
	Summary methods
	Resampling methods

	Model-based methods

	Implementation in Koe
	User interface
	Koe's task queue
	Implementation and expandability
	Storage
	Physical storage
	Store and retrieve data

	Conclusion

	Visualisation and classification
	Introduction
	Cluster analysis
	Hierarchical clustering
	Semi-automatic clustering
	Dimensionality reduction

	User interface
	Submit jobs to construct ordination and calculate similarity index
	Using similarity index to sort syllables in the unit table
	Using ordination for bulk labelling in an interactive cluster visualisation

	Implementation in Koe
	Construct ordination
	Calculate similarity index
	Collaborative labelling

	Case study: Validating classification with independent labelling
	Conclusions

	Sequence analysis
	Introduction
	Syntax discovery via sequence structure
	Manual examination of subsequence via filtering
	Automated subsequence discovery using N-gram
	Automated subsequence discovery using SPADE
	Analysis via visualisation with network models

	Implementation
	SPADE
	Networks

	Case studies: Evaluating song structure in NZ bellbirds
	Using SPADE parameters
	Using networks

	Conclusion

	Conclusions
	Key contributions
	Future work
	Data availability

	Bibliography

