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Abstract 

This study on intuitive frieze pattern construction and description was set up as an attempt 

to answer part of a general question: "Do students bring intuitive transformation geometry 

concepts with them into the classroom and, if so, what is the character of those concepts?" 

The motivation to explore this topic arose, in part, from the particular relevance that 

transformation geometry has to New Zealand: kowhaiwhai (Maori rafter patterns) are 

examples of frieze patterns and are suggested by recent mathematics curriculum 

documents as a way for Form 3 and 4 students to explore transformations. 

When very few restrictions were put on the subjects, frieze patterns made by Standard 3 

and 4 students displayed evidence of the use of transformations such as translation, 

vertical reflection, and half-tum. Transformations, such as horizontal reflection and glide 

reflection, were very rarely used by themselves . However, from the frieze group analysis 

alone, no strong conclusions could be drawn about the frieze patterns featuring a 

combination of two or more different symmetry types (besides translation). The Form 4 

class surveyed showed similar results, with an increase in the proportion of students using 

half-tum by itself. Another contrast between the two age groups was the production of 

disjoint and connected patterns: the Primary students' patterns were mostly disjoint, 

whereas the Secondary students made almost equal numbers of disjoint and connected 

designs. 

In a restricted frieze construction activity, which required the subjects to use asymmetric 

objects (right-angled scalene triangles), the use of non-translation transformations reduced 

considerably from the first exercise, although vertical reflection was still popular amongst 

70% of the Primary students. However, the results of a small survey of 10 children 

suggested that if the strips to be filled in are aligned vertically, the rarer symmetries such 

as glide reflection may be used more easily than in the horizontal case. 

The style analysis revealed that the Primary (pre-formal) and Tertiary (post-formal) groups 

were quite similar in the patterns they drew under the restricted conditions, and therefore 

in the probable construction methods used to produce them. The Form 4's patterns 

differed in several ways, especially by their extensive use of half turn and tilings. It seems 

that the Fourth Form students were affected by the formal transformation geometry 

framework to which they had been recently exposed. 



Abstract ill 

Interviews of 10 Primary students provided information about the intentions and methods 

used to construct the frieze patterns under both restricted and unrestricted conditions. The 

case studies revealed that several standard approaches to frieze pattern construction were 

employed, none of which corresponded with the mathematical structure of a symmetry 

group. It was also found that a number of methods could be used to make the same 

pattern. The qualitative analysis highlighted some shortfalls of the quantitative approach. 

For example, some students used transformations not detected by the frieze group 

analysis, and some symmetries present in the children's patterns were incidental (a spin­

off of another motivation) or accidental. Ambiguities in pattern classification also arose. 

The Primary children's descriptions of the seven different frieze groups (which were 

discrete examples) displayed several characteristic features. For instance, they often used a 

form of simile or metaphor, comparing a pattern part to a real world object with the same 

set of symmetries. In addition, many children considered a pattern's translation unit to be 

'the pattern'. In this case, the interviews suggested that the repetition (translation) was 

obvious to the students. Also interesting was the tendency of these subjects to write down 

orientation or direction judgements, omitting the relationships between adjacent congruent 

figures within a pattern. However, the Primary children did use more explicit 

transformation terminology when able to describe the patterns orally. A peculiar feature of 

these explanations was that the symmetry described was often not differentiable from 

another symmetry. For example, to a child, the phrase "turn upside down" can mean a 

half-tum or a horizontal reflection or both; the result is identical in many cases. 

Secondary and Tertiary students tended not to use implicit phrases in their pattern 

descriptions but were more explicit and precise, using a wider range of criteria in their 

descriptions. The results from this activity also indicated that the Primary and older 

students alike did not perceive the patterns to extend infinitely beyond the confines of the 

the page, highlighting another difference between the mathematical structure of a 

symmetry group and the intuitive cognitive processes of the students. 

An additional matching activity was conducted in the interviews, requiring the subjects to 

match various pairs of frieze patterns and discuss the similarities they saw. It appeared that 

transformation criteria were not verbalized predominantly over other criteria such as 

orientation or direction judgements, although many matches were made between patterns 

with the same underlying frieze group. 

Finally, educational implications for mathematics were indicated and areas for further 

research were suggested. 
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1 Introduction 

1.1 An Explanation of the Topic 

Aims 

This thesis addresses the question of how students of various ages perceive, or make, 

frieze patterns. The purpose of this research is to decide whether intuitive transformation 

geometry concepts form a component of either of these processes and, if so, to what 

extent. Consequently, the main objective of this mathematics education study is to 

identify and describe the character of the conceptualization and utilization of 

transformation geometry in students' description or construction of frieze designs. In 

particular, we consider this conceptualization and utilization as an element of 'geometrical 

intuition ', which is a perceptual function by which a person apprehends spaLial 

relationships independent of a formal geomerry framework. To outline the nature of this 

topic , there are three key phrases which probably deserve further explanation: 

transformation geometry,frieze patterns, and intuition. These terms are discussed in the 

three subsections which follow. 

1.1.1 Transformation Geometry 

Background 

Transformation, or 'motion', geometry was secured on firm mathematical ground in the 

1870's when Felix Klein and Sophus Lie produced their version of it. In one sense, it can 

be considered as a refashioning of Euclidean (Sinha, 1986) and other geometries. In 

hindsight, this progression seems to have been quite natural. For instance, David Hilbert 

praised Euclid for his foresight in perceiving that 'motion' is a prerequisite for 

establishing the congruence of two figures (Sinha, 1986). 
;, 

Rosenfeld ( 1988) reported that, in 1872, Felix Klein presented a lecture outlining the 

Erlangen Program, entitled (in English) Comparative Overview of Recent Geomerric 

Investigations. The types of motions which he considered varied from rigid, affine, and 

projective transformations to inversive, circular and conformal transformations . Klein 
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noticed that such transformations form groups 1 under composition. His emphasis was 

therefore on groups of transformations of space or manifolds, and the geometric 

properties of spatial figures. In this present study, however, the consideration of 

transformations is generally restricted to the 'rigid' or congruence transformations of the 

plane, as well as a variety of associated groups. This begs the question: what is a rigid 

transformation? 

Rigid Transformations 

Loosely, a rigid transformation is a motion of the plane which doesn't change the size or 

shape of figures within that plane. However, from a mathematical point of view, a 

transformation is a mapping which describes the relationship of points and their images; 

the idea of a motion is informal. Martin (1982) showed that there are only four types of 

rigid 'motions': a reflection about a mirror line, a rotation about a point, a translation in 

the direction and length of a vector, and a glide reflection about a line. The transformation 

most likely to be unfamiliar to the reader is the glide reflection. This 'motion' can be 

understood as the composition of a reflection and a translation, although it is a 

transformation in its own right. If this seems somewhat unexpected or contrived, it may 

be helpful to remember that a rotation (or a translation) can both be thought of as a 

product of two reflections . For more formal definitions of these transformations, see 

section 2.4. 

If a transformation maps a set of points onto itself (so that it appears unchanged), it is 

called a symmetry of that set of points. As a consequence, there are four types of 

symmetry associated with the four types of transfom1ations, which is contrary to a 

popular view that symmetry is synonymous with reflection symmetry. 

1.1.2 Frieze Patterns 

Until their own work was published, Gri.inbaum and Shephard (1987) explained that the 

term pattern had not been defined, even by mathematicians, in a lucid and useful way. 

For the purposes of this thesis, the word pattern is employed very broadly in its popular 

use, that is, as some son of 'regular design'. (A design is taken to mean any set of points 
.) 

in the plane). Unlike Gri.inbaum and Shephard's (1987) definition, tilings (partitions of 

the plane into regions) are considered to be a special kind of pattern. A frieze pattern can 

be understood, informally , as a set of points in the plane which has translation symmetry 

in only one direction. An example is shown below. 

1 The algebraic properties of a group arc assumed to be known to the reader. 
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B 
Figure 1.1 

Reproduced from Shubnikov and Koptsik (1974), p 90 

If we imagine the infinite extension of the pattern shown above (fig. 1.1) and translate it a 

distance AB (along its 'length'), then it will map onto itself. Of course, this particular 

example has other types of symmetries as well, such as a half-tum symmetry about the 

point 0, a reflection symmetry about the line v, and a glide reflection symmetry about the 

line h (with the translation component in the direction of h). 

In general , every frieze pattern has an underlying set of symmetries forming a frieze 

group . It was probably first proven by Federov a hundred years ago (Washburn and 

Crowe, 1988), and was shown again in detail by Martin (1982) , that there are only seven 

different classes of frieze groups . Examples and the corresponding nomenclatures 

(Coxeter, 1987) are given in the following table: 

Table 1 

Belov 's Senechal's Martin's Examples 

Crystallographic Abbreviated ( 1982) 

Notation Notation Notation 

plll 11 F1 /j~· 

plml lm F1 
1 <J<J<]<J<J<}(J 

pmll ml p2 
1 L1">-~~.c::1 

plal lg p3 L-1 ~ c::::J ~ 1 
"--J '-.::::J '-.::::J 

pl 12 12 F2 ..-::::1 /1 ,/1 z1 .:, V V V 
pmm2 mm pl 

2 <J?><I><I> <J 
pma2 mg p2 

2 ~ ~ 
'--J/ '--.j 
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1.1.3 Intuition 

Perhaps the most elusive ingredient of this thesis' title is that of intuition. Before 

proposing a working definition, it seems appropriate to consider a number of viewpoints 

of this concept. For instance, the Concise Oxford Dictionary ( 1990) described intuition 

as: 

"1. immediate apprehension by the mind without reasoning. 2. immediate apprehension by a 

sense. 3. immediate insight." 

It appears that the term has a similar meaning in psychological circles, but it is viewed 

somewhat suspiciously by a number of psychologists, as the following extracts from 

psychological dictionaries indicate: 

"Immediate perception or judgement, usually with some emotional colouring, without any 

conscious mental steps in preparation; a popular rather than scientific term." (Drever, 1952) 

"1. direct or immediate knowledge without consciousness of having engaged in preliminary 

thinking. 2. a judgement made without preliminary cogitation . The term is more often used by 

laymen mther than by scientists." (Chaplin , 1968) 

However, some psychologists, such as Carl Jung (1933) have described inruitive 

personality types in detail. Based on Jung's work, a personality type indicator known as 

Myers-Briggs has been developed. It divides perception activities into two categories: 

sensing and intuition. Jung described both types of perception as irrational functions, 

since neither operation is restricted by "rational direction" (Myers and McCaulley, 1985). 

Myers and Mccaulley gave a description of each of these two perception functions: 

"Sensing .. . refers to the perceptions observable by way of the senses. Sensing establishes what 

exists. Because the senses can bring to awareness only what is occurring in the present moment, 

persons orientated towards sensing perception tend to focus on the immediate experience and often 

develop characteristics associated with this awareness such as enjoying the present moment, 

realism, acute powers of observation, memory for details, and practicality. [In contrast] intuition .,, . 

.. . refers to perception of possibilities, meanings, and relationships by way of insight. Jung 

characterized intuition as perception by way of the unconscious . Intuitions may come to the 

surface of consciousness suddenly, as a 'hunch', the sudden perception of a pattern in seemingly 

unrelated events, or as a creative discovery . ... persons orientated toward intuitive perception may 

become so intent on pursuing possibilities that they may overlook actualities." (p 12) 
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More recently, interest has increased amongst cognitive psychologists in a related area to 

intuition; that of explicit and implicit memory. Parkin et al. (1990) explained that: 

"Explicit memory refers to any test procedure that requires subjects to reflect consciously on a 

previous learning episode .... Implicit memory tasks, in contrast, assess subjects ' memory for a 

learning episode without any necessity for a conscious recollection of that episode." 

In their experiment, Parkin et al. found that explicit memory of an episode was affected 

by an imposition of secondary processing demands whereas implicit memory was not. 

Similarly, the spacing of repetitions during initial learning affected explicit memory 

performance, but not that of implicit memory. 

Piaget and Inhelder ( 1971) were a ware of the existence of intuition. After observing that 

figurative aspects of thought are usually different from operational aspects, they wrote: 

"But there would appear to be an exception to this - the faculty known to mathematicians as 

geometrical 'intuition' . An adult subject who 'sees in space' ... does not stop at imagining static 

configurations in three dimensions any more than two. He [or she] is able to imagine movements 

and even the most complicated transformations thanks to a remarkable adequation of image to 

operation. This correspondence retains exceptional validity in spite of the well known 

shortcomings of intuition (such as the difficulty in visualizing curves without tangents, etc.)" 

(p 317) 

The description of intuition, or similar notions, has not been restricted to the domain of 

psychologists. In 1952, for example, the famous mathematician Poincare related in detail 

the differences he perceived between two types of mathematical mind, namely, intuitive 

and logical (Aiken, 1973). Similarly, Gagatsis and Patronis (1990) reported that: 

"Skemp (1971) draws a distinction between two levels of functioning of intelligence, that is, the 

intuitive and the reflective. The intuitive level involves awareness, through the senses, of data 

from the external environment which are 'automatically' classified and associated to other data. 

However, in this activity, the person is not aware of the mental processes involved. In contrast, at 

the reflective level, the mental processes become a focus of introspective awareness." _,, 

Of additional interest is Resek and Rupley's (1980) investigation of 'mathophobia'. 

Using the Myers-Briggs Type Indicator and ideas closely related to Skemp's (1979), 

such as instrumental and relational understanding, they found that a correlation existed 
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between rule-orientation and sensation, as well as between concept-orientation and 

intuition. 

Drora Booth (1975) has considered the intuitive use of symmetry operations in children's 

spontaneous pattern painting. In a personal correspondence (1991) with the researcher, 

she explained her own understanding of intuitive transformation concepts in children's or 

folk art work: 

"I take the term to mean any symmetry operation that can be identified in a work (painting, 

carving, weaving, block construction, etc.) that was created without the makers having formal 

knowledge of the mathematical concept." 

This definition is very similar to the one eventually formulated in this thesis. However, in 

a cultural context, Griinbaum (1985) warned that: 

"Even if we were to believe ... that symmetries can be used to explain the ornaments, that has 

absolutely no implication on what the creators of these ornaments had in mind. Any of the 

periodic symmetry groups have as a prerequisite the infinite extent of the ornament; surely no 

Islamic artist would have dared even to think in such a sacrilegious way about the ornaments he 

can create .... [Indeed], up to two centuries ago no artist or craftsman or mathematician defined 

regularity through symmetries. Equal parts - yes; equal position of parts with respect to their 

neighbours - yes; but equivalence with respect to the whole - never entered the picture." 

A suspicion arising from Gri.inbaum's point is that some, or even all, of the symmetries 

able to be identified in a frieze pattern may not be intended, even intuitively, by the 

pattern's creator. Such symmetries in a pattern are therefore accidental, and labelling them 

as intuitive may be misleading. Naturally, the mathematical classification of patterns has 

the benefit of being systematic, but it may not provide a great deal of insight into a child's 

intuitive description or construction of a pattern. Lesh (1976) made a specific cautionary 

note: 

" .. . the researcher who begins with the assumption that children think in terms of slides, flips and 

turns may be just as nai"ve as the theorist who assumes flips come before turns and slides, just 
;, 

because flips are mathematically the most powerful. It could be that children do not conceive of 

ri gid motions as compositions of slides, flips, and turns , but instead use some entirely different 

system or relations to describe spatial transformations." (p 234) 
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In conclusion, some of the key facets of the perceptual process of intuition seem to be that 

it is immediate, non-reflective, informal (independent of a formal framework), and 

associative (in the non-mathematical sense). While the identification of symmetry or 

transformations within a pattern may indicate an intuitive use of transformation geometry 

on the part of the creator, this isn't necessarily so. Thus, in this thesis, the working 

definition of intuitive transformation geometry in frieze patterns is the non-accidental 

presence of transformations or symmetry within a frieze pattern independent of a formal 

transformation framework. The property that the perception or creation of a design be 

immediate remains a secondary consideration throughout this study. However, in the 

analysis of survey results, one of the four measures employed to indicate the relative 

'intuitive-ness' of the frieze groups addresses this concern also. 

One final point: expressions such as 'more intuitive' indicate a comparison of one or more 

of the facets of intuition discussed above. It is hoped that the context of this phrase will 

make these facets clear. 

1.2 The Motivation for Exploring Intuitive 
Transformation Geometry and Frieze Designs 

"Perhaps more emphasis needs to be devoted to investigations exploring the 

intuitive ( i.e., non-formaliz ed) acquisition of systems of mathematical 

operations, relations and transformations. There is a popular misconception 

that concrete and intuitive mathematics is inferior mathematics and that the 

viability of a mathematical topic is measured solely in terms of its 

formalization and abstractness. In fact, the situation is often exactly the 

opposite." (Lesh, 1976, p 203). 

,, 
linear patterns, sometimes called strip or frieze patterns, ... I believe are 

one of the great untapped geometrical treasure chests." (Williams, 1989) 

Grtinbaum and Shephard (1987) noted that the art of tiling and pattern-making appears to 

have begun very early in the history of civilization and, although the cultures emphasized 

. different aspects" of design, it seems that: 

"Every known human society has made use of tilings and patterns in some form or another." (p 1) 

They also claimed that many examples of artifacts from all cultures display a high degree 

of intricacy and complexity. Of particular interest to New Zealand is Knight's (1984a) 
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observation that Maori rafter patterns, kowhaiwhai, suggest a well-developed geometrical 

intuition on the pan of their creators. 

Figure _ 1.2 

Reproduced from Hamilton (1901). 

These designs, when imagined to be infinitely extended along their length, are examples 

of frieze patterns. The relevance of this present study seems to be supported by Knight's 

conclusion: 

"The growing awareness of the importance of Maori Culture in New Zealand makes it particularly 

appropriate for students, both Maori and Pakeha, to relate the mathematics they learn to their 

cultural heritage." 

Not long after Knight's article was published, the New Zealand mathematics syllabus for 

Forms 1 to 4 ( 1987) indicated that kowhaiwhai could be used to explore translation 

symmetry in Forms 3 and 4. However, it appears that little is known about the way in 

which students perceive these patterns, or if intuitive symmetry considerations fonn a pan 

of this perception. If a teacher is employing a process-orientated approach to this topic 

(Skovmose, 1985 ), it may also be of interest to know the character of students' use and 

understanding of transformation geometry in their constructions of strip patterns. 

Gagatsis and Patronis (1990) pointed out that intuition (non-reflective information 

processing) plays an important role in the development of reflective thinking, especially 

for children. In fact, they maintained that: 

" ... intuitive thinking necessarily precedes rencctive thinking and can help its evolution." 

By implication, it would appear that exploiting a student's informal understanding of a 

concept may prove to be particularly valuable to mathematics educators. For instance, 

Bruner ( 1966), advocated the use of a "child's intuitive level as the starting point for 

teaching" (Booth, 1984). Booth (1985) herself concluded success in employing 

children's spontaneous pattern painting as the starting point for teaching art and 

transformation geometry. 
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However, only 13 years ago, Shultz (1978) indicated that: 

"Little is yet known about or agreed upon regarding children's cognitive abilities concerning 

transformation geometry." (p 195) 

Today, this still appears to be the case. In addition, Lesh (1976) indicated that difficulties 

in teaching motion geometry may be a result of the fact that: 

"children make many mathematical judgements using qualitatively different methods than those 

typically used by adults." (p 186) 

He also noted that such differences are not particularly well understood by researchers, 

particularly in the area of geometry. By focussing on the character of intuitive 

transformation geometry concepts , this thesis attempts to contribute towards the 

knowledge in this area. 

1.3 An Overview of the Thesis 

To explore this topic, we examine, in chapter 2, the mathematics education literature on 

the role of geometry in the development of spatial sense and consider the merits of the 

'transformation approach.' A summary of the relevant psychology and mathematics 

education literature on the perception and learning of transformations and symmetry is 

subsequently undertaken . The literature review also considers a study of children's 

spontaneous pattern painting and its implications to intuitive transformation geometry. 

The review ends with a summary of some mathematical classifications of designs. 

Chapter 3 outlines the design and execution of the surveys and interviews conducted, and 

describes the analysis methods used to examine the results. Chapters 4 and 5 include the 

results and discussion of the unrestricted and restricted frieze pattern construction 

activities. Chapter 6 characterizes the written and oral responses to the frieze pattern 

description activity. Summaries are given at the end of chapters 4, 5 and 6. 

Chapter 7 concludes the study by discussing the implications of this thesis' findings for 

both researchers and mathematics educators at the Primary and Secondary school levels. 

To this end, appendix D includes a brief review of some relevant material for use in the 

learning environment. 



2 Literature Review 

2.1 Geometry and the 'Transformation Approach' 

2.1.1 The Importance of Geometry and Spatial Thinking 

The Nature of Spatial Sense and Ability 

In the Commission on Standards for School Mathematics (1989), the National Council of 

Teachers of Mathematics (NCTM) stated that, in part, spatial sense is "an intuitive feel for 

one's surroundings and objects in them." In fact, as Del Grande (1990) pointed out, it 

has been found that spatial perception does not consist of one ability but many. He listed 

and described nine skills. Briefly, these are: visual copying, hand-eye coordination, left­

right coordination, visual discrimination, visual retention, visual rhythm, visual closure, 

figure-ground relationships, and language and perception. 

Owens and Stanic (1990) explained that spatial ability appears to consist of two key 

facets: visualization and orientarion. These factors were derived from Bishop's (1983) 

and Halpern's (1986) material as cited by the authors. Visualization can be thought of as 

the ability to imagine how objects will appear after some change (usually affine) is 

imposed on them, while the orientation factor includes the ability to detect arrangement of 

elements within a pattern or the ability to maintain accurate perceptions despite a change 

of orientation. 

Wheatley (1990) viewed spatial sense in terms of imagery. He summarised the aspects of 

imagery that Kosslyn (1983) proposed: construction (concrete or abstract images 

constructed from viewing, reading or reflecting), representation (the recalling of images, 

not necessarily the same as the original), and transformation of self-generated images 

(e.g., mentally rotating an object to compare it with another; recognising symmetry) . .,, 

Geometry and Spatial Thinking 

The NCTM (1989), in the United States stressed the importance of developing spatial 

sense in students: 
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"SpaLial relaLions are necessary for imerpreling, understanding and appreciating our inherently 

geometric world." 

Shaw ( 1990) shared this belief, and indicated that geometry and the development of 

spatial sense should be prominent in the elementary and middle school curricula. She 

gave several reasons to support her view, including a quote which indicates that geometry 

is as important as numbers in mathematics education. Some examples of the benefits she 

saw are that such development is practical because it relates to the real world; children 

already have inherent notions of space because they grow up in a three dimensional 

world; it encourages problem solving; and students attitudes are enhanced. 

Hemmings et al. ( 1978) pointed out that in everyday life, people are faced with spatial 

problems more often than numerical ones. As well, they proposed that mathematics is a 

way of appreciating the environment. Therefore, a considerable portion of people's 

appreciation comes about through spatial awareness and understanding, since the physical 

environment is itself spatial. More generally, they stated that: 

"Imuili ve awareness of spatial properties seems to be at the heart of most mathematical thinking." 

Little wonder then, that Poincare (the famous mathematician) maintained that geometers 

are more intuitive, whereas analysts are more logical, in their thinking (Aitken, 1973). 

Wheatley ( 1990) indicated that a shift in mathematics curricula from procedures towards 

relationships is taking place, and therefore spatial sense takes on increased importance. 

Spatial sense, he surmised, is indispensable in giving meaning to our mathematical 

experiences. In a similar vein, the National Council of Supervisors of Mathematics 

(NCSM) warned in their report on Essential Mathematics for the Twenty-first Century 

(1989) that (American) graduates in 2001 presently face the prospect of a "computation­

dominated curriculum more suitable for the nineteenth century." Among the twelve topics 

essential for students presently they listed geometry, with attention given to parallelism, 

perpendicularity, congruence, and symmetry. 

Interestingly, Wheatley (1977) reported that research into the hemispheres of the brain 
;,, 

suggests that the left hemisphere (in right-handers) excels in routine sequential tasks, 

logical reasoning, analysis and language processing, while the right hemisphere 

processes information more holistically and is superior to the left on spatial tasks. The 

right hemisphere 'thinks' in images while the left 'thinks' in words. One consequence of 

this specialisation of the hemispheres, Wheatley explained, is that it is possible to 
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understand or 'know' a concept without being able to verbalise it. He continued (1977, 

1990) by remarking that mathematics curricula in most (American) schools provides little 

opportunity for encouragement of right-hemisphere thought. Geometry, involving 

problem solving activities that require imagery, is therefore sorely needed. Jensen and 

Spector (1986) extended Wheatley's idea by noting that the 'right side' is suited for 

spatial relationships and music. They went on to outline a number of movement activities 

for primary school children. These are designed to "unleash cooperative efforts between 

the two hemispheres of the brain" (p 16). 

Mason ( 1989) added another slant. He conjectured that the importance of geometry is 

"being aware of the fact that there are facts, rather than mastery of some particular few 

facts. " It is the 'mustness' of many geometry relationships which is important for the 

teacher to convey and for the pupil to see. 

Lesh (1976) gave yet another reason for focussing on geometry: 

" ... mos t of the models and diagrams (e.g ., number lines, arrays of counters, fraction bars, 

Cuisenaire rods, etc) that teachers use to illustrate arithmetic and number concepts presuppose an 

understandi ng of certain spatial concepts. Consequently, because of a lack of understanding of the 

spatial concepts, children some times experience misunderstandings about the models that are 

used." (p 186) 

Geometry, in aiding the spatial development of an individual, furthers that individual' s 

progress in ocher facets of mathematics . However, the degree to which this is true is 

uncertain . In some instances, the 'carry over' may not be particularly apparent. For 

example, in the abstract to their study on Spacial Ability, Visual Imagery and 

Mathematical Performance, Lean and Clements (1981 ) made an interesting deduction 

from their factor analysis: 

" ... spatial ability and knowledge of spatial conventions had less influence on mathematical 

perfonnance than could have been expected from recent literature." 

Perhaps the last perspective should be left to Owens and Stanic (1990), who took Lesh's 

point a step further and argued that spatial abilities are involved, not only in other parts of 

the mathematics curriculum, but in other subjects and in parts of people's lives. 
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Obstacles to Learning Geometry 

"Many people, among lhem can be found a large number of our elementary school leachers, look 

back lo this [deduclive] geometry with fear and trepidation for they never really understood what 

deductive proof was ·all about. But this is not geometry! Geometry is not the study of proof! 

Geometry is the study of spatial relationships of all kinds; relationships that can be found in the 

three dimensional space that we live in and on any two-dimensional surface in this three­

dimensional space." (Egsgard, 1970) 

Bishop (1986) identified three main areas of difficulty in geometry education: learning 

about space, learning about 'mathematizing' space, and learning about geometry. His 

suggestions for the improvement of geometry teaching (and research) seem to summarize 

nicely many of the concerns about learning difficulties that mathematics educators in have 

in this area. References are given for each point, and where necessary, a few notes are 

made. 

1. More use of the child's spatial environment needs to be made (Meserve and Meserve, 

1986; Bishop , 1977). Bishop ( 1988) gave the specific example of mathematical 

enculturation. For many pupils around the world, the geometric ideas they are being 

taught are based on a view which is 'foreign' to their 'home culture' . 

2. The status of geometry in elementary school needs to be raised (Shaw, 1990; 

Wheatley, 1990; NCTM, 1989; Lesh, 1976). 

3. Children need to not only be engaged in spatial activities , but reflect on them as well 

(Lesh, I 976; Mason, 1989; Pappas and Bush, 1989; Fielker, 1973). Gagatsis and 

Patron is ( 1990) found a favourable outcome from the use of geometric models in a 

process of reflective thinking. However they did note that, for a model to be suitable for 

the classroom, it must first have been implicitly used by the children as a model of action. 

Dienes and Golding (1975) made a similar comment in a section on transfom1ation 

geometry games (See appendix D 1 for details). Also, Wheatley (1977) cautioned against 

an emphasis on verbalization as the method of reflection; see point 7 below. 

_;, 

4. A variety of representations needs to be given to young learners, together with tasks 

calling for representation (Bishop, 1977; Yerushalmy and Chazan, 1990; Mason, 1989). 

Fischer (1978) formed the following conclusion indicating that the first of Bishop's 

proposals is not, by itself, enough: 
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"The presentation of a variety of shapes for a concept is not sufficient to prevent students forming 

limited concepts. The visual distinctions that students perceive in figures are often more 

compelling than the mathematical concept that is illustrated." (p 320) 

Charles ( 1980) outlined strategies for dealing with some of the representation difficulties 

in geometry. In the light of Fischer's findings however, his suggestions seem to be 

necessary, but insufficient, for avoiding limited conceptualization: 

(i) Identify the relevant and most frequently occurring irrelevant characteristics of the 

concept to be taught. 

(ii) Select a variety of examples. 

(iii) Select a variety of non-examples. 

(iv) Draw the students attention to the relevant and irrelevant characteristics of the 

concept with questions and explanatory comments. 

5. More use of 'scaling down' the environment is recommended (Hart and Moore, 1973). 

Bishop (1986) noted that geography educators recognised this importance earlier than 

mathematics educators. 

6. Emphasis should be given to desc1ibing geometric properties and relationships, with a 

deliberate avoidance of labelling objects which can limit a child's understanding (Mason, 

1989). 

7. More use of visual imagery needs to be encouraged (Wheatley, 1977). 

8. The teacher needs to expose the relationships between different aspects of spatial 

analysis (Mason, 1989). Fielker's (1973) point was a little different from Bishop's. He 

argued that the teacher should be a ware of structural relationships in order to give 

direction to the mathematical activities that their students engage in. His concern was that 

many of the activities in the primary classroom look like a series of party tricks. He 

suggested a more structural approach because: 

primary school geometry ... seems to be nothing but detail, a patchy set of enjoyable 

experiences with no structure to hold them together other than the teacher's intuitive feeling that it _,, 

is all part of mathematics." (p 12) 

Little wonder, then, that geometry is often skipped or skimmed over by (American) 

elementary school teachers (Lesh, 1976). Fielker continued: 
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"The pupils do not worry about the .. . coherence .... Perhaps even for the primary teacher the 

structure is not of primary importance. What is important is what activities to give the pupils. 

The advantage of the structure is that when you begin to see how things fit in you also see where 

the gaps are." (p 16) . 

Bishop (1986) concluded aptly: 

"Geometry learning needs to be taken much more seriously by research workers, and to be given 

greater priority by teachers and by curriculum developers." 

2.1.2 The Development of Spatial and Geometrical Concepts 

Much has been written on how the conceptualization of space develops. Detailed accounts 

of the relevant literature have been given by Hart and Moore (1973) and Downs and Stea 

(1977). Rather than present another comprehensive review, a brief description of the 

main points made by prominent researchers in this area is presented, based chiefly on 

more recent reviews by Dickson et al. (1984) and Bishop (1980). 

Jean Piaget 

It will come as no surprise that the work of Piaget et al. in this area is substantial. It 

includes studies such as The Child's Conception of Space (1956), The Child's 

Conception of Geometry (1960) and the lesser known Mental Imagery in the Child 

(1971) as well as summaries of these works. In all three books, the approach is 

developmental. 

Piaget and Inhelder (1956) distinguished between perception and representation. 

Perception is "the knowledge of objects from direct contact with them", while 

representation evokes objects in their absence. Representation is often called mental 

imagery. They investigated corresponding tasks such as simple detection (perception) to 

identification and reproduction (representation). The development from simple perception 

to representation involves a progressive differentiation of certain geometric properties, 

and falls under three general headings which occur in the order: topological, projective, 
.I 

and Euclidean. This has become known as the 'topological primacy thesis' (Darke, 

1982). Not until age eleven, stated Copeland ( 1979), does the child fully develop skills 

for metric geometry or measurement. 



Chapter 2 Literature Review 16 

The 'topological' stage consists of global property distinctions, which are made 

independent of an object's size or shape. These include: 

1. Proximity - the child can make a distinction based on which of two objects is nearer. 

For example, when drawing a face, the eyes may be close together but below the 

nose. 

2. Separation - a distinction based on whether two objects touch or not. For example, the 

child separates the eyes and nose (no overlap). 

3. Order - appreciating a sequence or 'between-ness'. For example, a nose is drawn 

between the eyes. 

4. Enclosure - for example, drawing eyes inside a head. 

5. Continuity - perceiving that an object's parts are connected, and which parts are 

connected. For example, drawing arms connected with the body but not the head. 

'Projective' properties involve the ability to predict how an object will look when viewed 

from different angles. Straightness is an example of a projective property. 

'Euclidean' properties relate to size, distance, and direction, and its development 

eventually leads to a metric geometry involving measurement (e.g., length and angle). 

For a more comprehensive review of these stages, the text How Children Learn 

Mathematics by Copeland (1979) is recommended. The development of transformations , 

as described by Piaget and Inhelder (1971) is omitted here and is outlined in subsection 

2.2.1. 

The significance of Piaget's work has meant that his theory has attracted a lot of study 

and, subsequently, criticisms of his ideas have arisen .. Dickson et al. (1984) gave three 

main reasons for this. Firstly, new perceptual theories in psychology maintain that the 

distinction between perception and representation is not particularly clear, that is, these 

processes differ only in degree of organisational complexity. Secondly, some of Piaget's 

experiments give quite different results when the procedure is modified in seemingly 

trivial ways. Thirdly, Piaget's use of logical mathematical structure is dubious. 

Darke (1982) made a review of the research on this topic and formed the following 
:,, 

conclusions about Piaget's theory: 

1. There has been an imprecise use of the terminology related to topology. Schipper's 

(1983) article reinforces this point, stating that the use of mathematically correct 

criteria yields arguments against the acceptance of topological primacy. 
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2. "Experiments were often complicated by non-conceptual factors" and "the children's 

actions were not as coherent as Piaget's theory would suggest. Their concepts of 

space appeared to be influenced by factors such as language, schooling, social 

situation and the presence of a handicap." 

3. It appears unwise to conclude that children should be taught topological concepts on 

the basis of psychological research. 

Other Viewpoints 

Bishop (1980) made the point that, despite the criticisms of Piaget, the Geneva school has 

had a sizable influence. However, Werner's (1964) work, which is recognised by 

geography educators, is not as well known to mathematics educators as it should be 

according to Bishop. He wrote: 

"Within his orthogenetic principle there is a progression from a state of relative globality and lack 

of differentiation to a stage of increasing differentiation, articulation, and hierarchic integration ... . 

Werner does not get into difficulties by using Piaget's 'mathematical terms' ... Werner's reminds 

us that insofar as we are concerned with spatial ideas in mathematics as opposed to just visual 

ideas, we must attend to large, full-sized space, as well as to space as it is represented in models, 

and in drawings on paper." 

Werner hypothesized that there are three levels of representation: sensori-motor, 

perceptual and contemplative . Bruner proposed another view of psychological 

development in the context of algebraic mathematics. He also suggested that there are 

three levels of representation which he called enactive, iconic, and symbolic (see Hart and 

Moore, 1973 for details). Bishop remarked that there is some resemblance between the 

stages theorized by Piaget, Werner and Bruner. 

Downs and Stea (1977) reviewed some of the literature on the development of cognitive 

mapping (" ... an abstraction covering those cognitive or mental abilities that enable us to 

collect, organize, store or recall, and manipulate information about the spatial 

environment"), and noted the work of Jean Piaget and Jerome Bruner in particular. They 

also outlined sogie of the major spatial experiences (too numerous to list here) that occur 

from prebirth through to the end of primary school. Perhaps their most noteworthy point 

was their challenge to some developmental views which assumed that "the cognition of 

small-scale spaces must inevitably precede the cognition of large-scale spaces." They 

supported their claim by taking pains to emphasize one of Bower's (1966) findings in his 
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study of six-week old infants. This study showed that congruence constancy doesn't 

emerge from more primitive perceptions. Bower himself surmised: 

" ... infants can in fact register most of the information an adult can register but can handle less of 

the information that adults can. Through maturation they presumably develop the requisite 

information-processing capacity." (Bower, 1966) Note: italics added. 

Finally, van Hiele's (1959) theory of spatial development has gained popularity 

(Coxford, 1976; Dickson et al., 1984) and is more strongly related to Werner's ideas than 

Piaget's or Bruner's (Bishop, 1980). Briefly, it involves five levels (paraphrased from 

Dickson et al., 1984): 

Level 1: Figures are distinguished in terms of their individual shapes as a whole and 

relationships are not seen between these shapes or their parts. Wirszup (as cited by 

Dickson et al.) stresses that solid grounding in level 1 is a crucial prerequisite to levels 2 

and 3. 

Level 2: At this stage, an awareness develops of a figure's parts. This becomes realised 

through practical work, drawing, painting, etc. The child can still not see relationships. 

Level 3: Relationships and definitions begin to be distinguished, and logical connections 

established, but only with guidance. 

Levels 4 and 5: The development of deductive reasoning occurs and synthesis (theory 

construction) eventually gives rise to complete abstraction. Concrete interpretation is no 

longer depended on. 

References to other more general learning theories are made throughout this text. For 

example, aspects of Piaget's theory of cognitive development and Dienes' theory of 

mathematics learning are used. Summaries of these theories can be found in sources such 

as Wadsworth (1979) and Reys & Post (1973) respectively. A few points about their 

ideas do seem important here and form part of this thesis' assumptions. Firstly, Piaget 

held that adults _g.nd children do not learn in the same ways. Children, especially young 

children, learn best from concrete activities. More generally, Dienes proposed the 

dynamic principle which occurs in three stages: the child should have initial 

(unstructured) experiences to relate subsequent experiences to, then engage in experiences 

structurally similar to the first in order to become aware of the concept, and then pursue 

the mathematical concept until operational. 
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Secondly, Reys and Post explained that Piaget's stages of cognitive development are 

sometimes misinterpreted. For example, it is not true that concrete materials are not 

needed by adolescent pupils. Until age 11 or 12, concrete operations represent the highest 

level at which a child can consistently operate. Therefore, in the development of new 

concepts, it is often necessary to start concretely before proceeding to abstract ideas. This 

last remark is similar to Dienes' constructivity principle. 

Lastly, Dienes (1969) suggested that children need to build their own concepts from 

within, rather than having those concepts imposed on them. Indeed, the fundamental 

assumption of the more recent constructivist theory, based on the work of Piaget and 

others, asserts that: 

" .. . learners actively construct I.heir own understandings rather l.han passively absorb or copy I.he 

understandings of others." (Simon and Schifter, 1991) 

2.1.3 Curriculum and the Merits of a Transformation Geometry Approach 

As mentioned above, the NCSM (1989) stressed the importance of geometry in the 

curriculum, and, among other things, they emphasized congruence and symmetry. They 

also advocated that: 

" .. . students should visualize and verbalize how objects move in the world around them using such 

terms as slides, flips and turns. Geometric concepts should be explored in settings I.hat involve 

problem solving and measurement." (p 45-46) 

But while there appears to be an increasing concern amongst various mathematics 

educators that spatial thinking be enhanced via geometry, debate still occurs over the 

relative merits of the 'transformation' approach and the traditional Euclidean approach. 

Sinha (1986) felt that this is unfortunate. He explained that: 

"an impression is gaining ground I.hat transformation geometry runs counter to what Euclidean 

geometry stands for. [But] if one takes pains to look at it, one can say that Euclidean geometry is 

the study of those Euclidean transformations that keep I.he properties of geometrical figures .., 
invariant. ... Euclid's treatment is reinforced, reshaped and refashioned with the aid of Klein's 

[1870's] approach. Transformation geometry is, therefore, Euclidean geometry." (p 47-48) 

Probably the main objection (at secondary school level) to the transformation approach is 

that a demise of the much cherished axiomatic treatment results and that 'the thinking is 

., 
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taken out of geometry.' Sinha faced this argument by suggesting an 'activity' instruction 

style for those up to 13 years of age; while "the formal axiomatic exercise can start with 

14 year olds." In India, he claimed that good students have thrived on such an approach 

to transformation geometry. 

Giles (1982) disagreed. He strongly advocated geometry for all pupils, notjust the top 

students. He did admit that there were those who felt that his particular approaches lacked 

substance, but he continued: 

" ... they are thinking of mathematics as static content, and their geometry is dead, entombed in 

textbooks. If the mathematics classroom is to be alive, then we must allow children to do their 

own mathematics. And a first step towards this is to set up activities that move problems out 

towards investigations." (p 37) 

If Giles' message has any value then Ki.ichemann's (1981) comment, aimed presumably 

at secondary level, seems particularly pertinent: 

" ... it would seem pointless to [study transformations) in a didactic, expository manner. The fact 

that the transformations can be defined in terms of actions (fo lding and turning) and their results 

represented in a very direct manner by drawings means that the topic is ideally suited to a practical 

and investigative approach. The actions and the representations are both highly intui table so that it 

should be possible to develop such an approach in ways that are meaningful to most children." 

Furthermore, Sinha's 'reconciliation' of the two approaches to geometry may not be 

completely satisfactory to many New Zealand secondary school teachers who seem to 

prefer the benefits that informal transformation geometry can bring to students of at least 

13 years of age. In the report onMathemmics Achievement in New Zealand Secondary 

Schools (IEA, 1987), the section on third fom1 teachers' practices and beliefs stated that: 

"Teachers overwhelmingly favoured (51 % emphasised, 31 % used) an informal transformation 

approach as an important method, with good support also for a co-ordinate approach (35 %, 38%) 

and an informal Euclidean approach (19%, 38% ). Formal transformation or Euclidean approaches 

had litlle support...:" (p 123) 

"Teacher practice was entirely consistent with three other statements eliciting strong support. 

These, chosen from seventeen, were: 

- an intuitive approach to geometry is more meaningful to students at this form level; 

- geometry should be taught mainly through transformations (reflections, rotations, 

translations ,etc.); 

- proofs of theorems should be delayed until students are at least 15 years of age." (p 126-127) 
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In support of the last point, Egsgard (1970) agreed with a similar British view that the 

axiomatic deductive geometry is suitable only for the top 5% of students. 

Several mathematics education researchers have indicated that the intuitive nature of 

transformation geometry is of tremendous value to the learner. For example, U sikin 

(1974) felt that transformation geometry is more intuitive for a student because it uses 

simple symmetry explanations and familiar movements. And Thomas (1978) quoted from 

the 1967 report of the K-13 Geometry Committee of the Ontario Institute for Studies in 

Education: 

"The main value of motion geometry is in achieving the objective of an informal, intuitive 

appreciation of geometry." 

A related reason was given by Kilchemann (1981): 

"nearly all the children tested had some understanding of reflection and rotation, which means a 

basis exists for studying the transformations in secondary schools." (p 157) 

It has been often argued that Piaget's findings support the transformation approach. This 

is not surprising. For instance, Piaget and Inhelder (1971) found that the essence of 

cognitive growth is the increasing ability to deal with invariant properties under more and 

more complex transformation systems (Perham, 1978). But, in another monograph, Lesh 

(1976) contended that Piaget's theory has often been used unjustifiably (or selectively) to 

foster support for transformation geometry in the primary curricula and for the 

'laboratory' form of instruction in general. 

Lesh (197 6) himself gave a number of other reasons for teaching transformation 

geometry to primary students. One of these is that a greater number of figures can be 

explored using transformation geometry than other more traditional approaches. The 

'Mira', for example, can construct many figures that a compass and a straight edge can 

not. 

Another justifi~~tion, often put forward by teachers, is that the primary curriculum .,, 

prepares students for secondary geometry. However, Lesh argued that primary pupils are 

often asked to explicitly deal with basic rigid motions when some research indicates that 

young children do not think in terms of motions but in terms of "changes in certain 

properties of the end states of transformations." (It is interesting that this viewpoint 

corresponds more closely to the formal mathematical consideration of transformations 
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than to the 'motions' perspective). More importantly, the rationales for teaching 

transformation geometry at secondary school don't necessarily apply to the primary level. 

For instance, Lesh (1976) maintained that the scope of transformation geometry at the 

primary level needs to broaden in order for it to relate to other subjects as it does in 

secondary school. His overall point was this: 

"Elementary school is different than secondary school. Its students are different; its classroom 

organization is different; its objectives are differenL" (p 192) 

But hope is not lost for transformation geometry at the primary level. For example, Lesh 

also outlined activities for primary students which he sees as both important and fun, 

such as tessellations. This in tum provided another reason for learning transformation 

geometry, namely , it provides a set of enjoyable, and hence motivating, tasks for students 

(Lesh, 1976). Many of the authors of the articles reviewed in appendix D also supplied 

testimony to this postive effect on children. 

As well as being important, enjoyable and motivating, one of the goals of geometry is to 

promote the spatial ability of the student. Perham (1978) proposed that for certain spatial 

tasks there may be a "link between transformation geometry and spatial ability." If this is 

the case, then this adds weight to the argument for including transformation geometry in 

the primary curricula. 

One of the justifications for including transformation geometry in secondary school 

mathematics has been that combinations of transformations provide insight into 

mathematical structure. For instance, reflections and rotations combined provide 

examples of non-commutative systems (Thomas, 1978). Insight into the structure of a 

group has also been hoped for by many curricula (KUchemann, 1981). While these may 

be admirable aims, Ktichemann (1981) made the following observations: 

"Most modern syllabi ... do not demand that this should be fully realised, with the result that 

teachers and their pupils are left working towards goals that are confused and incomplete. 

Moreover, many children's difficulties with single transformations pre-empts them from even 

considering combinations unless very simple transformations are used." Note: italics added . .,, 

Ktichemann dispatched yet another rationale: that transformation geometry can lead to 

other topics such as vectors and matrices, which will demonstrate the unity of 

mathematics by strengthening the ties between algebra and geometry (Thomas, 1978). 

His opposition to this argument was again pragmatic: 
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" ... it is extremely doubtful whether it is seen as meaningful by the majority of secondary school 

children." 

He also felt that it was less than ideal to include the topic in secondary schools 

mathematics for purely negative reasons, that is, that traditional Euclidean geometry is 

unsuitable for most students (Egsgard, 1970). Indeed, transformation geometry has 

generally been received: 

"with a lack of conviction in many fBritish l schools ancl a reluctance to abandon traditional, 

expository methods of teaching." (Ki.ichemann, 1981) 

So why teach transfom,ation geometry at secondary level if the aims for which it was put 

in place are not being attained? KUchemann (1981) concluded that two positions must 

arise: 

" .. . either transformation geometry is accepted as relatively unimportant ... or the transformations 

are studied sinMIY and are seen as valuable in their own right." 

It appears as if the second of these perspectives is the most accurate. Kiichemann (1980, 

I 981) reported findings that support the intrinsic worth of the single transformations; see 

subsection 2 .2. 1 for details . 

In summary then, the strongest arguments for including transformation geometry in 

curricula seem to be: 

1 . At all levels , it appears to be a more intuitive approach to geometry. 

2. The study of single transformations has intrinsic worth at secondary level, and 

probably at primary level. 

3. The activities associated with transformation geometry can be enjoyable and 

motivating at all levels. 

4 . There is some evidence that transformation geometry can contribute to a child's sense 

of space (see subsection 2.2.1 for details). 

Perhaps a further observation can be made. According to Gribble (1980), the education 

philosopher R. S. Peters set out three criteria for an activity to be considered as 

educational : (a) the activity should be valuable in itself; (b) it should "relate to other ways 

of understandings and experiencing", (c) the learner should feel that it is worthwhile. It 

seems that the more convincing justifications for transformation geometry satisfy two of 
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these criteria (at least, in Britain and the United States). If it is to satisfy the remaining 

requirement, (b), that there should be a "wide cognitve perspective", a variety of 

connections to other interests is needed at both primary (Lesh, 1976) and secondary level. 

This certainly appears to be possible. The appendix D entries, for example, clearly 

display the extent of the links which transformation geometry has with play, art, culture 

and computing. 

A Digressio11: The Pervasive11ess of Symmetry 

'"Symmetry' is the classical Greek word :EyM-METPIA, 'the same measure', due proportion. 

Proportion means equal divi sion and 'due' implies that there is some higher moral criterion . In 

Greek culture due proportion in everything was the ideal. The word and the usage have been taken 

over as a technical term into most European languages. The Chinese word, also embedded deeply 

in Chinese culture, indicates rec iprocity." (Mackay, 1986) 

When viewed 'dinergically' (reconciling opposites), as Doczi (1986) did, symmetry 

appears to permeate nature and art in a paradoxical, numinous and creative way. Also, 

symmetry is an aspect of many areas of study. Any reservations about this fact are soon 

dispelled upon a perusal of other journal articles in Hargittai's (1986) Symmetry: 

Unifying Human Understanding. Topics included: the nature of symmetry, 

crystallography, aesthetics, systems, geometry, music, computing, art (e.g., Escher, 

Bartnig), physics, cell biology, literature , chemical reactions, biochemistry, graph theory, 

design, biology, classifications, dance, anthropology, fractals , archaeology, inorganic 

chemistry, philosophy, cosmology, and chaos theory. 

Many other earlier works on symmetry exist. For example, Senechal and Fleck (1977) 

also made interesting links between various subjects via symmetry. Hofstadter (1980) 

used symmetry throughout his comparison of the work of Godel, Escher and Bach in 

order to illustrate the similar structures present in various systems of thought and action. 

Wey! ( 1952) explored symmetry in a number of contexts, as did an updated version by 

Rosen (1975). Shubnikov and Kopstik 's (1974) book explained, in some detail, their 

analysis of symmetry in both science and art. More recently, Hagen (1986), who is a 

perceptual psychologist, described some of the relationships between various geometries 
;, 

and representational art. Perhaps one of the most well known books involving symmetry 

is by Birkhoff (1933) in which he developed aesthetic measures for various objects. 

Lastly, Wood's (1935) contribution should be mentioned here, because he introduced 

non-mathematicians to the analysis of symmetry in patterns. 
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These works represent a small portion of the literature on symmetry. This fact points to 

the salience of symmetry, and adds weight to the argument for including it in mathematics 

curricula (Kappraff, 1986), as well as other curricula, at all levels. 

2.1.4 The Present . State of the New Zealand Mathematics Curriculum 

A brief overview of the transformation geometry content in New Zealand mathematics 

syllabi at the primary and secondary school levels is presented in this subsection. 

The Primary (Year 1-6) Syllabus 

The main philosophy behind the geometry component of the year 1-6 curriculum is 

outlined in the Syllabus for Schools booklet (1985): 

"In this syllabus, children's ideas of geometry are seen as originating in their immediate 

environment and fanning part of their everyday experience. The emphasis is on increasing their 

awareness of spatial elements such as points, curves, planes, shapes and solids, and on exploring 

the relationships between them .... It follows that geometry is at all times to be approached 

practically, with children being encouraged to use their powers of observation to the full and to 

communicate their findings. Geometry should not be seen as an isolated topic." (p 14-15) 

From the point of view of this thesis it is encouraging to see that, from year 1, the 

transformation geometry which the children are to study and explore includes: 

1. Symmetrical and repeating patterns 

2. Movement and position in space 

3. Various ways of covering surfaces (including tessellations) 

4. Symmetry in the environment. 

In addition to the above activities, from year 3, children are to investigate ways of 

packing objects in containers and explore symmetry in plane figures. Given the 

pervasiveness of symmetry in a child's world, all these topics seem to be highly 

conducive to the aims sketched above. 

;, 

It is worth mentioning that a great deal of geometric intuition and spatial thinking is 

required in other parts of the year 1-6 mathematics syllabus. The physical, iconic and 

symbolic representations of sets, whole numbers and fractions and the use of graphs are 

just some examples. A teacher should be conscious of this state of affairs because, 

according to Bishop (1977, 1986) and Lesh (1976), it is all too easy to believe that 
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children extract the same information from diagrams that adults do. Bishop (1977) 

contended that, in fact, many diagrams contain quite arbitrary visual conventions that a 

teacher may believe to be obvious but a child may not see. Lesh (1976) added that 

children (and adults) do not simply 'read out' but must 'read in', that is, they impose their 

own rules of organis_ation to perceive the world. 

The Form J.4 (Year 7-10) Syllabus 

The Form 1-4 syllabus also emphasises activities and working with mathematical 

apparatus wherever appropriate, but it is considerably less specific than the year 1 to 6 

syllabus in indicating the purpose of exploring geometry. It states in its general objectives 

that: 

"students should gain a knowledge of geometrical relations in two and three dimensions, and 

recognise and appreciate their occurrence in the environment." (p 5) 

The following information (with a focus on rigid transformations) is extracted from the 

transformation and symmetry section of the Form 1 to 4 geometry syllabus (p 26-27). 

The syllabus for the Form 1 to 4 students rests on the assumption that, by Standard 4, 

children can explore movement and position in space as well as recognise figures of the 

same shape and size. Furthermore, new Form 1 students should have had experience in 

exploring symmetry in the environment and in plane figures . 

In Form 1, students should be able to perform, use , and state the properties of, 

elementary reflections in a mirror line and recognise examples of reflection in the 

environment. They should also collect and draw examples of objects having line 

symmetry and be able to identify lines of symmetry. 

In Form 2, they should be able to perform, use, and state the properties of, rotations 

(multiples of 90°) and translations, and recognise examples in the environment. In 

addition, activities such as finding or drawing objects with rotation symmetry should be 

undertaken, and the student should be able to identify centres of rotation. 

;., 

. In Form 3, the concepts of transformations and invariance are introduced via the 

environment, for example, plane figures to their shadows, objects to plans, maps, or 

diagrams. The properties of reflections and rotations and their invariant points should be 

explored with attention given to the special case of the half-tum. Using informal methods, 

students should also be able to find the angle and centre of a rotation. A classification of 
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symmetrical objects according to the number of lines of symmetry and the order of 

rotation should also be made. It is suggested, in brackets, that an exploration of 

translation symmetry via wallpaper patterns, kowhaiwhai and weaving patterns could be 

made. 

In Form 4, as well as reiterating the concepts from earlier years, students are required to 

explore the properties of translation and represent two dimensional translations with 

Cartesian vectors. Successive translations can be described by adding vectors. The 

magnitude and direction of a vector, their addition and subtraction, and their 

multiplication by a real number should also be explored. 

The Form 5 (Year 11) Syllabus 

The purpose of the geometry component in school certificate for Form 5 students was not 

explained in the School Awards Prescriptions booklet (1991). General aims of the whole 

syllabus were given instead. The approach taken appears to be at an intermediate level of 

formality. It was explained that, in the examination, reasons (but not proofs) for 

geometrical conclusions may be asked for and these reasons should clearly indicate the 

appropriate geometric principle. Interestingly, paper folding is listed among the acceptable 

construction techniques. 

The (rigid) transformation component of the geometry section consists of: 

(i) Geometry of the plane based on the transformations - reflection, rotation and 

translation, but not glide reflection. 

(ii) Properties that are invariant under these transformations. 

(iii) Combinations or composition of transformations. 

(iv) Simple deductions based on transformation properties. 

(v) Line symmetry and rotation symmetry. 

(vi) Applications of vectors to translation. 

(vii) Applications of 2x2 matrices to transformations, inverse transformations and 

combinations of transformations . 

.) 

Perhaps two observations could be made. Firstly, despite the emphasis on working with 

concrete materials in the two previous syllabi outlined, no specific comment was made to 

this effect for the Fifth Form students. It has been noted above that students, from the 

concrete operational stage onwards , can benefit from this approach. In particular, this 

thesis argues that the exploration of patterns and figures in the environment and their 
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symmetry 1s important in its own right and links mathematics with other subjects. 

Secondly, and more specifically related to transformations, given the aspersions cast by 

Kiichemann (1981) on the use of transformation matrices to illustrate groups as an 

example of unification in mathematics (see subsection 2.1.3), it would appear that the last 

item on the list (vii) may be of little value to students at this level (if this is its motivation). 

Kiichemann' s assertion is reinforced by the observation that this relationship between 

matrices and transformations may be viewed only fleetingly, since it no longer appears in 

subsequent secondary mathematics courses. Indeed, as we shall see, the consideration of 

both groups and transformation geometry seems to disappear completely. 

The Form 6 and 7 (Year 12 and 13) Syllabi 

One of the aims of the Sixth Form Certificate mathematics course is "to consolidate and 

extend the work of fifth form mathematics." But while the present Sixth Form Certificate 

mathematics prescription aims to provide a course appropriate to the needs of the wider 

group of students at this level, it also has a strong 'top-down' influence since it is 

designed to prepare students for tertiary level study as well. It seems likely that this 

presents a conflict of interest in choosing suitable topics to include in the curriculum at 

this level, one result of which is that transformation geometry is not in the Sixth Form 

Certificate course at all. Instead, coordinate geometry is seen as the appropriate extension 

of the Fifth Form geometry section . Consequently, the syllabi for seventh form 

mathematics courses do not furnish a transformation geometry component either. 

Finally, mathematics education researchers , teachers, and the curriculum (for, at least, 

pre-Fifth Form students) all agree in theory that spatial relations are important and that 

"the use of concrete mcxlels and instructional aids is essential for teaching geometry", yet 

the practice of many New Zealand secondary school teachers is inconsistent with this 

philosophy. For instance, the second IEA study (1987) reported that: 

"62% of teachers said that they ignored specific teaching of spatial relations .. . and almost 65 % of 

the teachers made no use of 'commercially or locally produced materials for students' and 80% of 

teachers found little or no use for 'commercially or locally produced films, filmstrips, teacher 

demonstration models, or overhead projector masters'." (p 126) 
.,; 

Stop Press 

With the publication of the new Mathematics in the National Curriculum: Draft (1992), an 

emphasis on the relevance of mathematics and practical problem solving may influence 
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the degree to which patterns are used in the exploration of transformation geometry. Of 

course, the success of new curriculum development is dependent on satisfactory 

implementation. 

Conclusion 

In conclusion then, it seems that as students progress through Primary and Secondary 

school, the stress in the present New Zealand mathematics curriculum on the use of 

concrete materials diminishes considerably. Correspondingly, emphasis appears to shift 

from a concrete, 'intuitive' approach (up until Form 4 or 5) to a more symbolic, formal 

approach in later courses. What is peculiar about transformation geometry in this 

progression is that not that it is developed intuitively up until Standard 4, nor that it is 

formalized somewhat from Form 1 to Form 5, but that it suddenly vanishes in Form 6! 

This disappearance seems a pity (in the view of this thesis) since the symmetry of 

patterns, for instance, is by no means trivial and is a natural extension of earlier work on 

transformation geometry. Furthermore, in a New Zealand context, this topic is highly 

relevant to students in that it is one practical and aesthetic way of connecting mathematics 

with an aspect of Maori culture (Knight, 1984). Such a topic may also provide stimulus 

for some teachers to use materials as part of the facilitation of their students' learning. 

With the advent of a new syllabus, this approach may become more common. 

2.2 Transformation Geometry: Learning and 
Perception 

2.2.1 Mathematics Education Studies in Transformation Geometry 

By the end of the Fourth Form, students in New Zealand have had exposure to most 

types of affine transformations, apart from glide reflection. In this section, investigations 

are outlined which describe the child's conception of those transformations. Emphasis is 

given firstly to rigid transformations and then to symmetries. 

On a more genefal note, Lesh (1976) warned education researchers against of the pitfalls 

of employing Piaget's style of using of mathematical structures to model and analyse the 

learning of mathematics concepts with. Lesh did this by drawing a parallel between 

Piaget's topological primacy thesis and the evolution of isometries. The gist of the 

argument is that, because all rotations are the composition of two reflections, and all 

translations are the composition of two rotations, the evolution of these concepts must 
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necessarily evolve in the order: reflection, rotation, rranslation. But Lesh indicated that 

this mathematical conclusion is probably unhelpful from a cognitive point of view since: 

1. The most general mathematical relation is not necessarily the most psychologically 

basic. 

2. Children and adults use different rules on which they form mathematical judgements. 

3. "If operationally isomorphic tasks vary too much in difficulty, it may be meaningless 

to equate tasks on the basis of operational structure." (e.g., some research indicates 

that rranslations are easier than reflections, yet it is also quite easy to design a task 

where a reflection is easier than a translation). In short, classifying rigid motions as 

'slides', 'flips' and 'turns' may not be the most revealing analysis method. 

The last point not only presents a challenge to Piaget's topological primacy thesis, it also 

raises questions about investigations into the learning of transformation geometry. One 

implication of Lesh's observations seems to be that, if the argument for transformation 

geometry to be included in the curriculum is to have any validity, the character of the 

research in this area needs to be considered carefully. Two years after Lesh made his 

warning, Moyer and Johnson (1978) raised a specific challenge: 

"It will be difficult to devise maximally effective instructional activities concerning transformation 

geometry concepts until researc h can di scover what children consider to be the essential 

characteristics of rigid transformations" (p 277) 

It is to the studies addressing these concerns, and the conceptualization of symmetry, that 

we now turn . 

Transformations 

Moyer and Johnson (1978) reinforced Lesh's warning that cognitive development 

appears to depart from predictions made from mathematical structure by concluding that, 

for young children, "the flip is not primitive." In fact, they claimed that the developmental 

order appears to be translation, reflection, and lastly, rotation. 

_;, 

Let us digress for a moment. While certainly not mathematics educators, per se, Piaget 

and lnhelder (1971) drew some interesting conclusions about children's conceptions of 

transformations from Mental Imagery in the Child. An explanation of their terminology 

{ such as image; reproductive and anticipatory images; executional and evocational 

anticipation; static, kinetic and transformation reproductive images; gesture and drawing; 
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immediate and deferred images, product and modification} can be found in their book on 

pages 1-6. Among their conclusions they included statements such as: 

" ... it is easier for the child to imagine the product than the process, i.e., the movement as a 

trajectory." (from chapter 4 on kinetic anticipatory images, p 160). 

when the subjects imagine and draw in detail the arc-straight-line transformation, they 

represent the end product less well than when it is the main object of the test ... [And] while 

symbolic action bears directly on the transformation, imaginal representation bears first and 

foremost on the product of the transformation rather than on its successive stages. The image of 

the end product is even somewhat better when there is no attempt to imagine the transformation 

itself." (from chapter 5 on reproductive images of transformations, p 172-173). 

We can now return to the concerns of mathematics educators . Lesh (1976) noted that 

another study in mathematics education bears out the truth of Piaget and Inhelder's 

comments. Perham (1978) also noted that another important finding from Mental Images 

in the Child is that: 

"children are unable to comprehend reflections (flips) until age eight and rotations (turns) until age 

nine." 

However, she also pointed out that some other education studies suggest that these two 

isometries can be understood earlier than this. Booth's ( 1985) study of pattern painting 

with young children also suppons this finding (See subsection 2.3.1 for details). 

Karen Shultz, F. Richard Kidder, Faustine Perham and Diane Thomas all contributed 

articles in a monograph entitled Recent Research Concerning the Development of Spatial 

and Geometric Concepts (Eds., Lesh and Mierkiewicz, 1978). Dickson et al. (1984) have 

summarised this material for teachers, so there is no need to reproduce it here in the same 

detail. Instead, some of the conclusions from the anicles themselves are mentioned. 

This research by Lesh et al. was carried out almost entirely within the Piagetian rradition 

(Bishop, 1980). For instance, two studies investigated the conservation of length under .., 
various transformations. Thomas (1978) gave children aged 6, 9 and 12 the classic length 

conservation test and then conducted a set of tasks which involve the transformation 

(translation, reflection and rotation) of a triangle. Her conclusion follows: 
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"Results ... showed that Piagetian stage (rather than the age of the students) seemed to make an 

important difference when elementary students considered the question of invariance of length of 

geometric figures under given transformations. For rotations and flips, most students seemed to 

believe that length remained invariant, but for slides, the non-conservers saw the length of a 

geometric figure as changing. Similarly, for tasks involving a before-after comparison of only one 

figure, most students said that length would stay the same; however, when there was a congruent 

copy close by with which the student could make a visual comparison, non-conservers were 

significantly more apt to believe that a transfonnation changed the length of a figure." (p 191) 

Kidder (1978) studied a group of 8, 9 and 10 year olds who were successful with 

Piaget's length conservation test. They were given operational definitions of translation, 

reflection and rotation. Each child was asked to select, and use, one of five sticks (all 

different lengths) to indicate how the 'object' stick would look after a particular motion. 

Only 7 out of 31 classical conservers could consistently perform the task correctly. Two 

main conclusions follow: 

1. " ... classical conservation of length is not sufficient to ensure length conservation on 

more complex mental operations." 

2 . Classical conservation of length is probably a prerequisite for conservation of length in 

more complex situations (Dickson et al ., 1984). 

In a similar study of 9, 11, and 13 year olds (using triangles instead), Kidder found a 

large percentage of errors occurred due to a failure to conserve length. He therefore 

conjectured that, before a child is at the formal operations stage, she or he can only 

operate by focussing on one aspect of the task at a time, ignoring the remaining 

components. 

Thomas also constructed a 'conservation of position' task for the same subjects from her 

previous task. She positioned a penny on the 'object' triangle and asked the child to 

determine where a second penny should go on the 'image' triangle after a particular 

translation, reflection or rotation. She reported that while the data collected appears to 

indicate that the reflection and translation tasks were easier than rotation, the results aren't 

statistically significant. What is significant is the type of error made by each age group . 
.;, 

The 6 years olds errors revealed that they tended to focus on the sides of the triangles, 

whereas the 9 year olds' errors were influenced equally between vertices and sides. The 

12 year olds could successfully negotiate both together resulting in almost no errors at all. 
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Perham (1978) examined the influence of the orientation of the mirror line on 6 year olds' 

ability to perform reflection tasks. Similarly, the direction of translation and the angle size 

of rotations were investigated. Before- and after- instruction comparisons were also 

made, using a control group. The 'before' results showed that students understand 

horizontal and vertical translations quite well, being able to construct an image 

themselves. Oblique translations, and all reflections and rotations were not understood at 

either level of representation (multiple choice or image construction). After instruction, 

gains were made on horizontal and vertical translations, and horizontal and vertical 

reflections (both external and internal). Performance on rotation tasks increased only for 

the multiple choice level of representation. Overall, Perham felt that the results reinforced 

Piaget and Inhelder' s ( 1971) proposed order of learning transformations, that is, 

translation first, then reflection, then rotation. Secondly, the orientation of a 

transformation rather than its type appeared to more important in effecting learning; 

oblique transformations were particularly difficult for 6 year olds, even after instruction. 

Shultz (1978) investigated a number of variables that might affect the difficulty of 

transformations for 6 to 10 year olds. She considered the three 'basic' types of 

transformations, various displacement sizes, horizontal and diagonal transformations, 

meaningful or non-meaningful configurations, as well the size of the object transformed. 

Several conclusions were made (see Dickson et al., 1984), some of which are listed here: 

1 . Translations were easier than reflections, and reflections were easier than rotations. 

2. Short translations were easier than long or overlapping ones, and horizontal 

translations were much easier than oblique ones. 

3. Overlapping images was difficult. 

4. The youngest children often changed a non-meaningful configuration into a 

meaningful one. 

5. Large configurations were usually easier to translate than smaller ones. 

6 . Oblique reflection errors showed a fixation with vertical or horizontal displacements. 

7. Children tended to turn an image so that it faced the direction of the reflection or turn. 

Fischer's (1978) study on Visual Influences of Figure Symmetry on Concept Formation 

in Geometry, although not specifically on transformation geometry, seems particularly 
.; 

relevant. Among her conclusions are included statements such as: 

"Students do form concepts that are biased in favor of upright figures. [Also] students can more 

easily recognise upright figures for a concept than tilted figures, regardless of instructional 

experience. [In addition,] the visual distinctions that students perceive in figures are often more 
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compelling than the mathematical concept that is illustrated. [But] upright biases do not appear to 

be a reflection of poor conceptualization .... there is a direct relationship between a bias for upright 

figures of a concept and success in learning the concept" (p 319-320) 

Thomas' (1978) also considered the effect of a figure's symmetry on the difficulty of 

reflection and rotation tasks. The figures used were letters of the alphabet. The subjects 

were 9, 12, 15 and 17 year olds. Some of her findings were: 

1. Rotating a figure with rotation symmetry was difficult to visualise. 

2. Horizontal reflection with the asymmetric figure J was also difficult. 

3. The 9 year old group scored lower on all the tasks than the other three groups. 

4. There was no difference between performances on vertical reflection and horizontal 

reflection tasks, nor between direction of rotations. 

Lesh (1976) himself made a number of related points about primary school children's 

difficulty with transformations. For instance, the difficulties in rotating simple objects and 

simple configurations seem to be roughly the same. However, if the object becomes too 

complex, then the task is more difficult. Secondly, a complex figure's properties may be 

preserved under a 'simple' transformation like translation but not for a more difficult 

transformation (like rotation) . Thirdly, transformations can prove difficult if they are too 

large or too small (overlapping). Also, Lesh also reported that vertical and horizontal 

translations, reflection or rotations are all easier than oblique transformations. Lastly , and 

most unexpectedly, he claimed that a single transformation (e.g., reflection) is often only 

slightly easier than a composition of two transformations (two reflections). Furthermore, 

"children are sometimes more confused about the terminal configuration of a single 

transformation than they are about the terminal configuration of several transformations." 

Lesh added that the order of two compositions may also be a factor in a task's difficulty. 

Education research on primary children's conception or performance of transformation 

tasks since the 1978 monograph seems to be scarce. Dickson et al. (1984) listed one other 

investigation: the first APU study in 1980 shows that 11 year olds were more successful 

in reflecting a figure in a vertical rather than oblique ( 45°) mirror line. 

_;, 

In the journal Arithmetic Teacher, a number of articles on the use of logo for exploring 

transformations at the primary school level appear. While not presented as research 

studies in themselves, they all point to the motivation which computers induce in their 

students. For more details, see appendix D. 
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Finally, in Brazil (Nasser, 1989) and in Spain (Jaime and Gutierrez, 1989), more recent 

investigations have considered transformation geometry learning from the perspective of 

the van Hiele levels. In fact, much earlier, Coxford (1978) concluded at the end of the 

Lesh and Mierkiewicz's (1978) monograph that such a model be used for geometry 

education research iri general. While extensive work by Russian researchers has occurred 

on the van Hiele levels in general (Wirszup, 1976), it is encouraging to see that specific 

ventures are now being made into the applicability of van Hiele's work to the learning of 

transformation geometry. Unfortunately, at the time of this thesis' submission, these 

articles are still unavailable and, consequently, they are not reviewed here. 

Overall, it seems that the amount of research in the area of children's transformation 

geometry learning remains small and Thornas's (1978) comment still appears to be true: 

" ... there is still a need for a more basic type of research concerned with assessing the 

understandings children have of transformation geometry concepts before they are exposed to any 

formal instruction in that area." (p 178) 

Unfonunately, research on learning transformations at the secondary school level may be 

even more uncommon. KUchemann's (1980, 1981) reports on the Concepts in Secondary 

Mathematics and Science (CSMS) project appear to be the best known studies in this 

area. In the more detailed rep on ( 1981) of the two, he examined the effect of the presence 

or absence of a grid, the complexity of an object, and the slope of an object on the 

difficulty of reflections. He also considered variables affecting the difficulty of rotations 

(quarter turns). The subjects were 449 third year secondary school pupils, around 14 

years of age. He also described the different kinds of answers given to the test items and 

the associated levels of understanding. Finally, combinations of reflections and rotations 

were explored as well as inverses. Some of his conclusions are listed below: 

1. "Children found it much easier to cope with a vertical (or horizontal) mirror-line than 

one that was slanting ... A common error when the mirror line was slanting was to 

ignore its slope and simply reflect across or down the page." 

2. The grid was often a powerful guide to the choice and direction of reflection. However 

it did not help students overcome overt errors such as the horizontal reflection fixation 
~ 

when the mirror line was oblique. 

3 . "An increase in the complexity of the object can have a marked [detrimental] effect on 

facility and also on the quality of children's answers." 

4. " ... the tendency to reflect horizontally or vertically ... is panicularly strong when the 

slope of the object is itself horizontal or vertical." 
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5. Overall children found it difficult to coordinate the slopes (of object and mirror line) so 

as to "conserve the angle between them". 

6. The rotation results showed that, "in contrast to the reflection items, the presence of a 

grid did not necessarily make the items easier." 

7. Horizontal and vertical starting positions were easier, and significant difficulty arose 

when the centre of rotation for the quarter turns was not on the flag. 

8. "For combinations of transformations the results indicate that if children are to cope 

with these at all, the constituent transformations will have to be very much simpler 

than the ones used in the test." While nearly all the children had some understanding 

of the single transformations, the nature of some of the conceptual difficulties indicate 

that the study of reflections and rotations individually "need not be trivial." 

9. "If transformations are to be studied in their own right, it would seem pointless to do 

this in a didactic, expository manner. ... The approach being advocated here is one 

that directs the children towards discoveries from which the rules and properties of the 

transformations can be surmised and against which they can be tested." 

Some of the IEA ( 1987) results may be of interest here, especially to New Zealand 

educators. The study concluded that most of the questions set were too difficult or foreign 

for the New Zealand Form 7 students. Since transfom1ation geometry is no longer 

present in the syllabi at that level (if it ever truly has been), there seems little point in 

reviewing their findings. The summary of the Form 3 study reported that New Zealand 

students obtained an average success rate of 55% with the six transformation geometry 

questions despite teachers expecting a low performance. Interestingly, in a multiple 

choice question involving the translation of a scalene triangle, only 32% of the students 

could correctly identify the appropriate transfom1ation, compared with 88% who correctly 

recognised a reflection in another question. The study suggested that a bias in teacher 

presentation may have been responsible for this. Also surprising was that the boys did 

significantly better than the girls on this question. A pre- and post- test analysis was also 

done, with the following conclusion: 

"Generally, students showed an 11 % growth from pre-Lest to post-test with the most marked 

differences (26% and 11 %) arising on the two questions involving half-turn rotations. Boys 

performed a litt!e better than girls, with an exception evident in a question where the object to be 

turned was not a shape, but the students themselves. The girls were 4% more successful than the 

boys with this question." (p 180) 

Over the last two decades, the use of microcomputers for education purposes has 

increased dramatically. Two studies are discussed which investigate adolescent 
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transformation geometry learning in a computing environment. The earlier of the two is a 

short communication by Ernest (1986) on an experiment designed to "provide motivated 

practice for the retraining of transformation geometry." Subjects were fifteen year olds of 

"below average mathematical ability." After 6 weeks of classroom instruction, the 

students were given two pre- and two post- computer gaming tests; Test 1 was specific to 

the game, Test 2 more general. Comparing the results of the control (no gaming) group 

with the experimental group, Ernest found that the computing gaming improved the 

results of the specific tasks in Test 1 but no gain was apparent in the related (but distinct) 

skills required in Test 2. While there was no evidence to show that non-computing 

practice of these specific skills would not have produced the same effect, Ernest 

concluded: 

"the computing gaming also resulted in a positive affective response, which the paper and pencil 

practice might not match, especially with the below average students of the sample." (p 207) 

The second article by Edwards (1988), which formed part of a larger ongoing study into 

learning mathematics in the microworld environment in general, discussed the 

performance of 12 to 14 year students on tasks such as transformation identification, 

drawing the result of a transformation, finding inverses, and combining transformations. 

She found that the identification task was the most difficult, especially when finding the 

centre of a rotation. Two interesting 'erroneous' strategies arose for this particular task: 

(a) "selecting the midpoint of an imaginary line connecting the starting vertices of the two 

shapes" , thereby missing some of the problem's constraints (or possibly generalizing 

from the half-tum case); (b) interpreting rotation as "a composite motion which moves the 

shape to a specified point and then turns it around its starting vertex." In fact, this second 

interpretation is not erroneous; it is simply a composition of two transformations instead 

of using only one. Neverthelss, Edwards believed that it reflects a nai"ve conception that it 

is only the figure, and not the plane, which is being transformed. Consistent with 

Ktichemann's (1981) findings, Edwards also found that rotations, where the centre of 

rotation lay outside the figure, were difficult for some students. Finally, almost all the 

students were successful at predicting images and finding inverses. Most could also 

manage the transformation combinations, somewhat unexpected in the light of 

Kuchemann's study (1981 ). The most difficult combination was that of two parallel .,, 
reflections; some students found it surprising that the result was not a reflection but a 

translation. 
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Symmetry 

So far the discussion has considered transformations, leaving the consideration of 

symmetry, which is easily a topic in its own right, until now. The key difference between 

symmetry tasks and transformation tasks, in Piagetian terms, is that the former usually 

involves a static identification of an image, whereas the latter may involve kinetic images 

(reproductive or anticipatory). The number of studies in mathematics education on the 

identification of symmetry is small, especially when compared to the bulk of literature to 

be found on this topic in the field of perceptual psychology. Our summary begins with 

the Primary school sector. 

Dickson et al. (1984) briefly noted the findings of the first APU Primary Survey. It 

discovered that the nature of a figure could affect the ability of 11 year olds to identify a 

vertical line of symmetry. On the item that featured a rectangle, only 19% were successful 

in identifying both lines of symmetry. 

Arithmetic Teacher reported that the Results and Implications of the Second NAEP 

Mathematics Assessment (1980) of elementary schools in the United States found that 

over 80% of 9 year olds could identify a pair of figures that were the same size and shape 

(congruent). The results decreased only slightly when some transformation of these 

figures was required for matching. Secondly, almost 80% of 9 year olds could determine 

that a shape did not have reflection symmetry with respect to a given line. The language 

used for this task also had significant effect on these tasks. For example, 80% of the 9 

year olds could "select a letter that could be folded so that both sides would match", but 

only 18% could answer the same question when the term 'symmetric' was used. (While 

the details aren't clear, it certainly appears that the survey has assumed that the word 

symmetric means reflectionally symmetric). 

At the Secondary level, only a few indications of students' understanding of symmetry 

seem to exist. The first APU Secondary report (cited by Dickson et al.) required students 

to indicate all lines of symmetry in various figures. Dickson et al. (1984) summarized 

their material in_,,a table which suggests that the 15 year olds (and the 11 year olds) found 

identifying a single vertical reflection line easier than identifying a single horizontal or 

oblique reflection line. Furthermore, the proportion of students who could identify a 

horizontal line of symmetry was the same as the proportion who could identify an oblique 

line of symmetry. Not surprisingly, the group of 15 year olds performed better on all 

such symmetry tasks than did the 11 year old group. 
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The second N AEP (1980) study also reported that over 90% of 13 year olds could pick 

out a pair of figures with the same shape and size. Again, the success rate dropped only 

slightly when a figure needed to be transformed in some way to make a match. However, 

the term 'congruent' was unfamiliar to many 13 year olds. 

Given this lack of information on symmetry identification at all levels, it seems 

appropriate to at least be aware of the perspective that perceptual psychology brings to 

this subject. We take recourse to this approach in the following subsection. 

2.2.2 Symmetry: A Perceptual Psychology Viewpoint 

A Word of Caution 

One approach to the question of symmetry perception and preference is via perceptual 

psychology but it can be difficult to draw implications for the formal learning 

environment from laboratory experiments. For instance, most of the studies' subjects are 

adults; most students are not. It is also important to be cautious about making pedagogical 

inferences from such studies because the psychologist's interests is not the same as the 

mathematics educator's (Bishop, 1980): 

"Certainly no currently available psychological theory, including Piaget's, is ready for wholesale 

adoption by mathematics educators .... It is time for mathematics educators to forge ahead to 

investigate new concepts and new tasks that have not yet been considered by psychologists ..... . 

[A goal of space research is] to clarify some of the relationships between figurative and operative 

thought. Even if psychologists believe they can ignore variations due to figurative content, the 

issue is highly important to educators who must use concrete materials and figurative models to 

teach mathematical concepts." (Lesh, 1976) 

"More recent school experiments show that didactical results derived from psychological research 

do not agree with the results found in classroom research." (Schipper, 1983) 

In some instances, Washburn and Crowe (1988) warned that the conclusions of these 

studies may be mathematically misleading. For example, Julesz (1975) did not consider 

repetition to be a form of symmetry, which is indicative of a larger problem with several 

experimental psychological studies, that is, that symmetry is assumed to mean mirror 

symmetry. Washburn and Crowe also reported that few articles even defined symmetry 

and none had controls for cultural differences, rendering some conclusions useless for 

anthropological consideration. 
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Similarly, throughout Howard's (1982) book are examples of some of the shortfalls of 

psychological studies in orientation and symmetry. Consider, for instance, the attempts to 

illustrate that mirror image orientations are more easily confused than are the other 

orientations. Incredibly, the shapes used in all such studies were not asymmetrical so that 

certain arrangements _of two such congruent figures could be regarded as 180° relative 

rotations rather than reflections. This observation has implications which are discussed in 

subsection 6.3.1 (see 'undifferentiated transformations'). 

Despite these shortcomings, Bishop (1980) argued that there is still value in considering 

the work of psychologists, factor analysts and the like because they can sharpen the ideas 

of mathematics educators and provide stimulus for "the development of teaching material 

for the classroom." Perhaps, then, the most natural and fundamental question to begin 

with is: "what is perception?" 

Perception 

Essentially, perception is a process by which an individual obtains information from the 

environment. In almost all settings however, there is usually more information than a 

single person can assimilate. Washburn and Crowe (1988) concluded in their review: 

"Thus perception involves selec tion. Through socialisation , an individual in a particular culture 

learns to foc us on features which will enable him [or her] to predict events, reduce uncertainty, 

and make appropriate responses." 

The first stage of perception involves the encoding of the stimuli, called pattern 

recognition (Reed, 1973) . Foster (1984) summarized four kinds of shape recognition that 

experimental psychologists have discovered: 

1 . Local features like whether points in a pattern are on a straight or curved line. 

2. Local spatial relationships, for example, whether points in a pattern are left, right, 

above or below the vertical/horizontal reference. 

3. Global features associated with the pattern such as symmetry and orientation. 

4. Global spatial relationships like the position of the pattern in the field. 
;, 

These features are used in two different learning processes: discrimination learning and 

generalisation learning. Respectively, these processes involve learning the features which 

distinguish one pattern from another or which are used to group patterns as equivalent. 

The second of these processes can be thought of as analogous to the acquisition of 
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Howard's (1982) descriptive domains which are the rules a person uses (often 

subconsciously) to relate an object to a class of objects, other members of which are not 

in view. Such a class of objects is called the stimulus domain. Howard noted that 

ambiguities about stimulus and descriptive domains plague most experiments in 

perception. He also introduced the idea of response domains, that is, the type and level of 

complexity of a response. Responses can vary from simple detection to distinguishing 

between, identifying and describing . 

Actually, several years beforehand, Bruner (1957) made the assumption that "all 

perceptual experience is necessarily the end product of a categorization process." He 

described four facets of the (unconscious) classification process. These are: 

1. The critical attribute values (properties) for an object to be included in a category. 

2 . The way in which the properties can be combined in order to make inferences about 

the category. 

3. The assigning of weights to various properties. 

4. "The acceptance limits within which properties must fall to be criteria!." 

Howard 's ( 1982) work on human visual orientation contains some other useful 

terminology which is used in chapter 6 of this thesis. Firstly, the direction of an object is 

specified by selecting a reference point O through which is drawn a reference line. The 

direction of a point P on the object, from 0 , with respect to the reference line, is the 

signed angle between line PO and the reference line. The orientation of an object is its 

rotational position in space relative to some fixed axis of reference. There are three types 

of directional and orientational Judgements: proprioceprive (the direction or orientation of 

one part of the body with respect to another part of the body), egocentric (the direction or 

orientation of an external object with respect to the body of the observer), and exocentric 

(the direction or orientation of an external object with respect to an external point and/or 

axis). Other helpful vocabulary is included in Howard's discussion of visual polarity: 

"Objects like trees, people, and houses are normally seen in one orientation with respect to 

gravity and with respect to the normally-vertical retinal meridia. Such objects have an intrinsic 

top and bottom y.nd will be referred to as mono-oriented objects, to distinguish them from poly­

oriented objects, such a scissors, toothbrushes and tennis rackets, which have no preferred 

orientation" (p 571 ) 
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Symmetry Detection and Preference 

Freyd and Tversky's (1984) anicle found that the relevant literature supports the notion 

that humans have an effective and efficient symmetry detection ability. A natural question 

to ask is whether symmetry detection leads to biases in (mental) representations of visual 

forms. The answer is yes. Freyd and Tversky found, using a similarity-judgement task 

and a matching figures task, that: 

" ... nearly symmetric standard fonns are judged to be more similar to, and are more confusable 

with, even more symmetric forms than they are with less symmetric forms. The pull toward a 

more symmetric form does not occur for standard forms of lower symmetry .... [Also], if the form 

is perceived as having overall symmetry, the form is assumed , sometimes incorrectly, to have 

symmetry at the local level as well" 

In an article on symmetry in visual art, Molnar and Molnar (1986) note that many objects 

are 'seen' as symmetrical when they are not according to the mathematical definition of 

symmetry. Luckiesh (1965) illustrated this tendency to diston images to 'see' symmetry 

with the following example. The figures "S" and "8 " appear to be approximately 'even'. 

However, invert the sequence 8888SSSS, and the half-turn symmetry of each figure is 

shown to be an illusion. Other tests conducted by Eisenman and Rappaport (1967) 

showed that symmetrical shapes (taken from Birkhoff, 1933) are preferred (and 

preferentially produced and reproduced) over asymmetrical shapes, whatever the 

complexity of the shapes. 

With many studies (see Howard's work for a critical overview) displaying the importance 

of visual orientation, some of the findings with respect to reflection symmetry are not 

surprising. For instance, Fox (197 5) suggested that bilateral symmetry is a diagnostic 

feature, that is, an appropriate response (identification of an object) is made without any 

other analysis of the stimulus. Zusne and Michels ( 1962) found that their subjects al ways 

used bilateral symmetry to order a set of figures according to any of the three terms 

'geometric', 'regular' or 'familiar'. Goldmeier (1972, originally 1937) demonstrated that 

not only is reflection symmetry a very important feature of a form's appearance, but 

vertical reflection symmetry is the most salient. Rock and Leaman (1963) supported this ., 
finding: 

" ... this is the only orientation in which a symmetrical figure will spontaneously be perceived as 

symmetrical. ... This fact can be observed in everyday life. Vertically symmetrical figures do 
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look symmetrical, whereas the symipetry is often not noticed in horizontally symmetrical 

figures ... " 

Rock and Leaman (1963) continued to explore Goldmeier's findings by testing for 

differences in tt"ie phenomenal (visual frame) orientation of an object and its retinal (ego­

and oculo- centric) orientation. Their results showed that there is little change in 

appearance of a novel figure when only the retinal image is changed. If the orientation of 

a novel figure in the environment is changed it is usually perceived as different. Rock 

( 1973) explained that this is due to individuals assigning the directions top, bottom, left 

and right on the basis of cues from the visual or gravitational frame. The greatest 

differences in perceived form occur for rotations of 45° or 90°, with the least for left-right 

reversals. However, Howard (1982) maintains that the ability to recognise familiar, 

mono-oriented objects is more disrupted by a disorientation of 180° with respect to the 

retina than to gravity or the visual frame. In fact: 

"A disorientation of 90° or less with respect to the extrinsic axis has very little effect on the 

ability to recognise mono-oriented objects under ord inary conditions." 

Finally, from the point of view of intuition, it is interesting to note that preference for the 

phenomenal vertical orientation , and symmetry, is often subconscious: 

" .. . this effect occurs without the subject being in any way aware of what it is that determines his 

[or her] selection, or that he [or she] is behaving consistently with respect to any determinant. 

Symmetry is never mentioned and, as far as could be determined, did not enter as a conscious 

basis of choice." (Rock and Leaman, 1963, pl 77) 

2.3 Patterns and Sy1n1netry 

The amount of reference material on the creation of patterns or designs and its relationship 

to learning transformation geometry appears to be small, but growing. Sources such as 

Arithmetic Teacher and Mathematics in Schools provide some excellent ideas for use in 

the primary or s~condary classroom. For instance, Oliver (1979) presented an effective 

way of investigating symmetries through tessellations of various shapes. Also, Renshaw 

( 1986) discussed how reflection and rotation symmetries can be taught using some 

familiar trademarks. However, Williams (1989) made the point that while the symmetry 

of finite designs and wallpaper patterns gets considerable treatment in (American) 

schools, the use of one-dimensional (frieze) designs for this purpose is somewhat 
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overlooked. One benefit of exploring frieze patterns, Williams contends, is that their 

complexity lies between that of finite designs and infinite two-dimensional designs. 

But while the authors of various articles extol the virtues of transformation geometry and 

encourage a 'design approach', very little education research appears to exist which 

explores the relationship of visual patterns to transformation geometry from the 

perspective of students. Two natural questions arise: Firstly, do primary or secondary 

school school students intuitively use symmetries to produce patterns, and if so, which 

symmetries? Secondly, are any of the symmetries of a pattern perceived by primary or 

secondary school students , and if so , which symmetries? In both cases, it is also of 

interest to consider how the symmetries are used or understood by the students. 

Not surp1isingly, the studies of visual pattern perception are chiefly psychological. 

Unfortunately , the patterns used in these investigations were almost always 'finite' 

(trivial) . Some of these articles are reviewed in subsection 2.3.2. In the next subsection 

we examine the conclusions of an exten sive study by one researcher on the paintings of 5 

and 6 year old (Australian) children and the presence of symmetry within them. 

2.3.1 Young Children's Spontaneous Pattern Painting and Transformation 

Geometry 

Perhaps the most closely related education study to this thesis topic is the work of Drora 

Booth which inc ludes a masters thesis (1975), a Ph .D. thesis (1981) and a set of papers 

published in a variety of education journals from Australia. Booth's work has involved 

studying the spontaneous patterns painted by five-to-six year old children. In all her 

studies: 

"The children were instructed not to overload the brush with paint but merely to load the tip of 

the bristles, and they were shown how to wash the brush clean of one colour before using 

another. No other instructions were given . They were completely free to paint how and what they 

liked." (Booth, 1982). Note: Italics added. 

;, 

conditions [were] free from teachers' unconscious pressures towards pictographic 

representation." (Booth, 1980) 

"[The paintings] were retained in the schools until they were analysed and a record of their date 

and content made. They were then sent home in bundles at the end of each term in order to 
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minimise the cumulative effect of repeated parents comments and criticisms on paintings taken 

home individually." (Booth, 1982) 

Booth's earlier treatment of young children's pattern painting (1975) was essentially a 

cognitive (and aesthetic) development approach. Her concern was that of an art educator. 

She interpreted the patterns post hoc in terms of Piaget's cognitive development theory 

and showed that: 

" ... pattern making parallels the development of logico-mathematical structures of the child's 

knowledge of geometry and mathematics." (pix) 

One of her main findings was that: 

" ... pictographic representation is not a spontaneous discovery by the child [whereas] non­

representional geometric pattern making is a spontaneous development and does not depend on 

learning by imitation." (p viii) 

In her discussion of the theoretical implications of her masters thesis, Booth contends that 

the essential shortcoming of young children's art education, even today, is that 

importance is given to representational drawing at the expense of design. She emphasized 

this conclusion with a rather pointed quote: 

"There can be no doubt ... that the average child has extraordinary inventiveness in design and the 

average adult has none whatever, and that in between these two states there occurs the process 

known as art education." (Robert Fry, as cited by Booth) 

An interesting feature of Booth's analysis is the use of qualitative principles that she 

engaged. She listed five simple operations: translation, rotation, reflection, alternation and 

inversion. What makes the last two terms noteworthy is not that they are redundant 

(mathematically), but that they appear to be closely related to the intuitive 

conceptualization of some transformations made by children interviewed in this present 

study on frieze designs. 

'Alternation' 'Inversion' 

Figure 2.0 (from Booth, 1975, p 18) 
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In a personal correspondance (1991), Booth explained that inversion can be thought of as 

a half-turn. This may be correct, but her diagram (fig. 2.0) suggests that inversion can 

also be interpreted as a glide reflection, a rigid transformation that Booth does not include 

in this or her subsequent studies. 

While Booth's earlier concepts may still be useful for describing a child's 'intuitive 

understanding' of relationships within a pattern, the redundancy present can make 

methodical classification difficult. Systematic research of children's spontaneous non­

representational ('geometric') art doesn't appear to have begun until well into this century 

(Booth, 1975, 1982), leaving room for revision and refinement. For instance, Booth now 

prefers to classify 'geometric patterns' using a transformation geometry framework, as 

she explained in personal correspondence (1991) with the researcher: 

"You will have noticed that I no longer include these ["inversion" and "alternation "] in my 

articles. The reason being that since my masters thesis I have attempted to simplify my 

description of patterns to accord with transformation geometry or symmetry concepts." 

More generally , from her work (1975, 1976, 1977, 1980, 1981, 1982, 1984, 1985 , 

1987, 1988, 1989), Booth has reported that three broad types of pattern were identified: 

non-representation, pictographic representation, and a mixture of the two previous 

categories. The non-representation patterns were classified according to three 

developmental stages (scribble, topology and geometric) and two intermediate stages 

(pre-topology and quasi-pattern). The mixed category was also classified according to the 

non-representation content present in the paintings. 

The geometric patterns were divided into two main groups, the first arising from a 

systematic repetition of an element, the second arising from a division of the plane. It is 

interesting that these categories correspond quite closely to Gri.inbaum and Shephard's 

(1987) mathematical definitions of patterns and tilings. 

Booth (1982) summarized her 'geometric' results by stating that the first pattern to ., 
emerge from the topological stage is a 'translation pattern' usually of vertical lines, or 

occasionally dots. After that, the development sequence is not linear but complex and 

tree-like. For example, an old structure may disappear only to reappear several patterns 

later. However, it emerged clearly that: 
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" ... Lhe symrneLries operaLions underlying Lhe construction or pauerns develop in the order of (i) 

translation in one dimension, (ii) translaLion in two dimensions and one-fold reflection, (iii) two­

fold reflection, and (iv) rotation." 

Booth (1982) drew several other conclusions. Firstly, children's intuitive symmetry in 

spontaneous pattern making could provide a natural foundation from which to teach 

mathematics, science and art. This is because symmetry is an important link between 

these subjects. Secondly, the development of the symmetry operations underlies aesthetic 

development. Lastly, Booth argued that knowledge of the developmental sequence in 

pattern painting contributes to our understanding of human cognition. 

Booth also tested out some of these conclusions in a longitudinal study on the use of 

young children's spontaneous pattern painting as the starting point for teaching art and 

transformation geometry. This was done by raising to a conscious level a number of 

intuitive concepts embedded in the paintings, the vocabulary including the names of lines, 

shapes and patterns. Booth (198_4) reported encouraging results: 

"Children whose intuitive use of syrnrneLry operations in spontaneous pattern painting had been 

raised to a consc;ious level appeared to have a better grasp of symmetries than children talcing pan 

in formal lessons only. " 

2.3.2 The Role of Symmetry in Pattern Perception - A Psychological 

Perspective 

Given the presence of patterns, and in particular kowhaiwhai and tukutuku (Maori rafter 

and weaving patterns), in the New Zealand Fourth (and possibly Fifth) Form 

mathematics curriculum as examples for exploring symmetry, it is somewhat surprising 

that little is known about the extent to which symmetry is perceived in such patterns. 

Little or no mathematics education literature exists on this topic as far as the researcher 

can ascertain so, as before, we make an initial step towards that goal by examining some 

of the relevant perceptual-psychology literature. 

Symmetry as 'Goodness' .., 

Fred Attneave was one of the pioneers of research in the field of symmetry perception. 

Among other things, he conducted tests to provide a "clarification of the Gestalt doctrine 

that 'figural goodness' is favourable to rnemory." (1955) He did this by measuring 

symmetry as a form of redundancy. His (1955) article indicated that symmetrical patterns 
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are more easily remembered than asymmetrical patterns occupying the same number of 

cells (his experiments used patterns of dots within rectangular matrices). He suggested 

that symmerric patterns contain less information. 

Locher and Nadine (1973) argued that symmetric shapes, being redundant, should 

therefore take less time to examine, but subsequently found that this was not the case. 

While the distribution of eye fixations was different for symmerrical and asymmetrical 

shapes, no differences were found in the number of fixations or the length of the fixation 

times. 

Nevertheless, in a discrimination study, Gardner and Sutcliff (1974) found that patterns 

of equal goodness (as defined by rotation/reflection equivalence set size) were equally 

encodable, and the better ('more symmetric') the pattern, the faster it encoded. S zilagi and 

Baird (1977) also found that subjects prefened and preferentially produced symmetrical 

patterns in one-, two- and three-dimensional space. The 'goodness' of patterns was 

inversely related to the quantitative degree of asymmetry. Furthermore, Howe (1980) 

reported that: 

" ... the less the partial symmetry in a pattern , the lower was the judged goodness of the pattern. 

[Also], co rrect reproduction impro\'ed w iLh degree of partial symmetry [and) concordant results 

were found in a free recall learning task. " 

The studies above, while indicating a strong preference for 'symmetry' in patterns, are 

not specific about which symmetries are preferred and whar factors influence those 

preferences. It is to these considerations we now tum. 

Factors /llflue11cing Symmetry Preference in Patterns 

The perception of reflection symmetry in a pattern (with a single mirror axis) is affected 

by its orientation. Takala ( 1951) found that subjects were better at finding a figure 

embedded in a complex pattern if the figure's axis of symmetry was aligned vertically 

rather than horizontally. Corballis and Roldan (197 5) also obtained results which 

suggested that the symmetry of a pattern about its vertical axis is easier to recognise than 
.:, 

horizontal reflection symmetry. In addition they found that symmetry about a diagonal 

(45° or 135°) axis was of intermediate difficulty. But in a similar study (with the axes not 

displayed) Palmer and Heneway ( 1978) concluded that while vertical reflection symmetry 

was easier to recognise than horizontal reflection symmetry, oblique (or diagonal) 
' 

reflection symmetry was the most difficult to detect. 
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In a study of young (American) school children's recall and preference for patterns, 

Paraskevopoulos (1968) formed conclusions parallel to those of Palmer and Heneway 

above. He also maintained that the structure necessary to decode symmetry begins to 

become effective for: . 

1. Double symmetry (i.e., vertical and horizontal reflections together) at the age of six. 

2. Vertical bilateral symmetry at the age of seven. 

3. Horizontal symmetry at the age of eleven. 

However, Paraskevopoulos explained that his results are more in agreement with Piaget's 

(1947) theory that perceptual organisation is a result of a prolonged and sequential 

development rather than the Gestaltist view that the principles of perceptual organisation 

are intrinsically and innately determined. 

In Bruce and Morgan's (1975) study, observers were asked to detect small violations in 

(finite) patterns with vertical symmetry or a translation. They found that: 

"The decision time for symmetric patterns [i.e., with vertical reflection symmerry] tended to be 

shorter than for repeated patterns .... [Also). the saliency of [vertical renection] symmetry seems 

to a considerable extent to depend upon the ease of comparing spatially-contiguous elements near 

the midline of the pattern" Note: italics added. 

Therefore, in some instances, symmetry perception is also affected by proximity as well 

as orientation. Corballis and Roldan ( 1974) also discovered this when they required their 

subjects to judge patterns as symmetrical (i.e., vertically symmetric) or asymmetrical 

(i.e., repeated). The patterns consisted of either dots or arrowheads. From the data given 

it appears that the recognition of 'symmetrical' patterns is faster if the figures are close 

together. Also, the form of the patterns' motifs is also a contributing factor to the 

symmetry perception 'equation', since the perception of 'symmetrical' patterns was faster 

for arrowheads than dots. Other aspects of the experiment-such as instructions and the 

locus of fixation also played a part. The experimenters concluded: 

"These factors l:\_!1d the interplay between them can be reduced to a single common principle: If the 

patterns are perceived holistically, [renection] symmetry is more salient than repetition, but if 

they arc perceived as two separqte figures to be matched, then repetition is judged more rapidly 

than [vertical] symmetry." 
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The obvious om1ss10n from this discussion is that of rotation and glide reflection 

symmetries in patterns and the factors which affect their perception Unfortunately, 

relevant material seems to be very sparse indeed. The only source of information 

(discovered by the researcher) is in Washburn and Crowe's (1988) review of symmetry 

reproduction where they formed the opinion that the various studies were conflicting! In 

this review they noted: 

"Tekane (1963) found that Bantu subjects could complete patterns with bilateral symmetry better 

than patterns with rotational symmetry." (p 23) 

2.4 Mathe1natical Classifications of Finite and 
Border Designs 

In chapter 1 a rough sketch of the four rigid tran sformations, and the seven possible strip 

designs that can be generated from various combinations of these transformations is 

made. In this section we examine those concepts more closely through mathematical 

definitions. Considerations such as the classification of designs, patterns and pattern 

construction are also introduced. Almost all the tem1inology presented is used throughout 

the following chapters. However, some modifications to the meanings of the terms have 

been made in chapter 3 in order to better reflect the 'intuitive' use of transformations by 

the subjects of this study. Some of the theory below is found in Martin 's (1982) 

introduction to transformation geometry or Schattschneider's (1986) article on the 

creation of patterns, although most is extracted from Gri.inbaum and Shephard's work 

(1981, 1983, 1987) . 

2.4.1 Isometries 

An isometry or congruence transformation is any mapping of the Euclidean plane £2 onto 

itself which preserves all distances. That is , a is an isometry if, for any points P and Qin 

the plane, PQ = P'Q' where P' = a(P) and Q' = a(Q). (By implication, an isometry also 

preserves angle~and area). A svmmetrv on a set S, is an isomerry that maps S onto itself, 

that is a (S) = S. For brevity, the term 'transformation' is used throughout this thesis 

instead of 'congruence transformatio.n'; that is, it excludes non-rigid affine­

transformations unless stated ~therwise. It can be shown that every isometry is one of 

four types (see Martin, 1982): 
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1. Translation in a given direction through a given distance. More formally, given two 

fixed points A and B in the plane, the translation 'CAB is the transformation P~P' where 

PP' is parallel and equal to AB. 

Q Q 

pl\ 
//R' 

Figure 2.1 
6 

2. Rotation about a single point O through a given angle 8. The point O is called the 

centre of rotation. The geometric definition states that if A is a fixed point in the plane, 

and 8 is a fixed directed angle then the rotation PA.e is the transformation P~P' such that 

AP= AP' and LPAP' = 8. When e = re, the mapping is often called a half-turn . 

h . /\~ 
p' ,:;{' ~ / ~ 

'- / 

'·""A 
Figure 2.2 

3. Reflection in a given line P.. (the mirror or fine of reflection). This means that if P.. is a 

fixed line, a reflection in P.., cr;_, is the transformation P~P' such that if P is not on P.. then 

P.. is the perpendicular bisector of PP', and if Pis on P.. then cr;_(P) = P. 

,t. ,.( 
I rt.LJp' 

y 
Figure 2.3 

4. If P.. is a fixed line then a glide reflection y with axis P.. is the product G't = 'tcr where cr = 
Gfl. and 't is a translation in the direction of P... 

p 

Gl.~R 

Figure 2.4 

Q~R' 

~p' 
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Isometries of the types (1) and (2) are usually called direct or even isometries because if a 

triangle has its vertices labelled ABC clockwise, its image under either of these isometry 

types retains the same orientation . Isometries of the types (3) and (4) are usually called 

indirect, reflective or odd isometries, since they reverse the orientation of the labelling 

described. 

Two more points: note that the identity transformation maps every point of the plane onto 

itself and is a symmetry of every set. It can be considered as a trivial translation or a 

trivial rotation. Secondly, no distinction is made between a counterclockwise rotation of 8 

and a clockwise rotation of 21t - 8, nor between a rotation of 8 and a rotation of 8 + 21tk, 

for any integer k. As symmetries these are regarded as identical. Indeed, from a 

mathematical point of view, only the fin al result of a transformation is relevant, not the 

means of arriving at that result. 

2.4.2 Symmetry groups 

By convention , the horizontal direction is con sidered to be in the direction of the frieze 

group's translati on symmetry ; the verti cal direction is perpendicular to the horizontal 

direction . 

Probably the most common mathematical way of classifying a design, A , is according to 

the collection of all symmetries of A, S(A). Two such collections are of the same class if 

one can be transformed into the other by an affine transformation. It is well known that 

S(A) forms a group under composition and the number of symmetries in S(A) is called 

the order of the group. 

The notation for symmetry groups of finite order is well established. Such groups arise 

when A is a plane set with the prope11y that: 

SG.la There is a point invariant under all symmetries in S(A). 

The group consisting of one isometry only (the identity) is denoted as C1 (or "e"), and Cn 

is used for the group consisting of rotations through an angle 21tj/n U = 0, 1, ... , n-1) 

about a fixed point. This is called the cvclic group of order n. This can be thought of as 

the symmetry group of the 'n-armed swastika' . 

The second kind of finite symmetry group, Dn, is called the dihedral group of order 2n 

and consists of all the isometries of Cn together with n reflections equally inclined to one 
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another. For n 2:: 3, Dn can be considered to be the symmetry group of the regular n-gon. 

The infinite dihedral group, Doo, consists of all rotations about a given point and all 

reflections in lines through that point. It is the symmetry group of a circle. A small list of 

illustrative figures follows: 

7 l ?v 
C1 C2 C3 c6 

Figure 2.5.1 (Examples of Cyclic Groups) 

D D D 0 
D1 02 03 D6 D"" 

Figure 2.5.2 (Examples of Dihedral Groups) 

Instead of imposing property SG. la, we can obtain infinite border designs by letting A 

satisfy the following conditions: 

SG.lb S(A) contains non-trivial translations, and all translations in S(A) are 

parallel. 

SG.2 S(A) does not contain arbitrarily short translations. 

Under these requirements it turns out (see Martin, 1982) that there are 7 classes of frieze 

or strip groups . An example of a design from each class can be found together with its 

nomenclature in section 1.2. Equally well known is that if SG. l (b) is replaced by the 

condition that S(A) contains translations in two independent directions, there are exactly 

17 classes, called wallpaper groups . However, in this thesis, attention is generally 

restricted to border, frieze or strip designs. 

· It is possible that designs created in this thesis may not completely satisfy SG.1 and 

SG.2. Of interest then is GrUnbaum and Shephard's (1981) comment that suitable 

modifications of SG.1 and SG.2 can produce interesting designs and add to the number 

of classes. The mathematics of such considerations is far from trivial. For instance, the 

possible classes of symmetry groups S(A), when A is assumed to satisfy SG.2 but no 
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topological restriction is made, have never been determined according to Griinbaum and 

Shephard (1981). 

2.4.3 Tilings and ·Patterns 

Griinbaum and Shephard ( 1987) organised their comprehensive book on the basis of two 

categories: tilings and patterns. The definition of tiling that they give is of the plane, but it 

can be easily modified to apply only to a .illin.,_h~ which is a plane set enclosed between 

two parallel lines (the border lines, or edges, of h) . We restrict our attention here to a 

strip h with finite width, w, infinite length, and a centreline, 1, which is equidistant from 

the edges. 

A loose, general definition of a tilin£: of snip h, is a countable family of closed sets 'J = 

{T1, T2, .. . } which cover h without gaps or overlaps. The sets T1, T2, ... are called tiles 

of hd. In most investigations it is convenient to consider normal tilings of the strip. Put 

formally, the union U Ti is the exactly the strip h, and: 
i~l 

N.1 Every tile, Ti, of 'J is a topological disk. 

N.2 The intersection of every two tiles of 'J is a connected set, that is, it does not 

consist of two (or more) distinct and disjoint pans. 

N.3 The tiles are unifom1ly bounded. 

In contrast to a tiling of the sni.p, a strip pattern can be loosely thought of as repetitions of 

a motif, within a strip, in a 'regular' manner with no overlaps. A motif means any non­

empty plane set. A mono-motif strip pattern, 7 with motif Mis a non-empty family of 

sets in a strip, labelled by index-set I, such that the following conditions hold: 

P.1 The sets Mi are pairwise disjoint 

P.2 Each Mi is congruent to M and called a copy of M. 

P.3 For each pair Mi, Mj of copies of the motif there is an isometry of the plane 

that maps 7 onto itself and Mi onto Mj. 
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T hose symmetries of 7 which map a copy of Mi of the motif M onto ·itself form a group 

denoted by S(7/Mj). All groups S(7/Mi) are isomorphic and S(7/M) , the stabiliser of M 

in S(7), is considered to be equal to all each of thes~ groups. If S(7/M) consists of the 

identity alone, the pattern is called primitive; otherwise it is non-primitive. 

2.4.4 Further Refinements 

A mono-motif strip pattern, 7 with motif Mis called a discrete pattern if the following 

conditions hold: 

DP. l The motif Mis a bounded and connected set. 

DP.2 For some i there is an open set E, which contains the copy Mi of the 

motif but does not meet any other copy of the motif; that is, Mj n Ei = 0 for all 

j E I such that j :;c i. 

Such a discrete pattern is non-trivial if it satisfies another condition: 

DP.3 The pattern contains at least two copies of the motif. 

There exist 15 discrete types of frieze pattern, shown below. Patterns of the same discrete 

type are said to be henomeric. 

_J _j _J _J 
L_ ___J L- __J L- _j L-

PS1 PSS 

_J _J _J _J J_ J_ J_ J_ -, -, -, -, 
PS2 PS6 

L L L L L _Jr _Jr- _Jr- --1 r 

' r ' ' r PS7 

PS3 

~ ~ l- l-
L, L, L, L, L, 

PSS 

PS4 
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L _J L _JL_ _JL _JL 

,r_JL,r_JL7r...JL r ---, r ---, r ---,, ,r 
PS9 PS12 

L-, .-J L-, ~ '-, ..l j_ ..l ..l ..l 

_L 

PS10 T T T T T 
PS13 

-.-- _J_ -r- _j_ 

PS11 f- --1 f- -I f- ~ 
PS14 

f--i ~ I--, H I-
Ps1s 

Figure 2.6 (Examples of' the 15 types of Discrete Strip Patterns) 

Reproduced from GrUnbaum and Shephard (1987), p 244. 

Further refinements of the discrete patterns (using such concepts as homeomerisms and 

diffeomerisms) are possible but are not defined here. For a synopsis of such 

classifications see Grunbaum and Shephard (1981, 1983). 

Some pattern 'anomalies' can also be described successfully if sufficient restrictions are 

placed on them. For instance, we can consider 1110110-motif patterns with unbounded 

motifs. A particular example of this is a curve Qattern which satisfies conditions P. l, P.2, 

P.3, and DP.2. Instead of imposing condition DP. I we also require that: 

UP.I The motif Mis a closed set obtained as the image of a straight line under a 

homeomorphism of the plane onto itself. 

This (roughly) means that M is a simple curve which stretches to infinity in both 

directions. A special type of curve pattern is a filamentary one which has a motif (called 

the filament of 7') with the propeny that: 

UP.2 Mis contained in a (two way) infinite strip between two parallel lines, but 

is not contained in any (one-way infinite) half-strip. 

Put another way, a filament is the image of the miclline of a strip under a homeomorphism 

(a one-to-one, bicontinuous mapping¢: E2-,E2) onto itself. One example is a sine curve. 

Other examples from GrUnbaum and Shephard's ( 1987) work are given below. 
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Figure 2.7 

2.4.5 Adjacency Relationships 

"The various kinds of symmetry groups arc useful in the description of many of the artifacts, but 

more general approaches (based on 'adjacency relations' or other 'local' criteria) are necessary for a 

better understanding of the ornaments and artwork, and or the ways their creators thought about 

them ." (Grunbaum el al ., 1986) 

Besides the considerations of the previous subsections, other definitions have been 

developed by the researcher (Kelly, 1990) for the two purposes. The first aim was to 

classify finished frieze designs in a way that reflects the relationships between adjacent 

motifs. These relationships are often 'ignored' by the frieze classification. The second 

aim was to provide a basis from which to develop a classification of the behaviour which 

actually occurs to produce a pattern, that is, to provide a blue print of the intuitive use of 

transformation geometry as described by the creator. (see subsections 3.1.3 and 3.2.3 for 

the resulting analysis methods) This aim is a similar pursuit to that of Schattschneider 

(1986) whose emphasis is on: 

" ... the creation or designs through Lhc usc of isometrics, rather than the classification of 

completed designs." 

The classification of adjacency relationships lead to an infinite number of classes (Kelly, 

1990) called incidence categories. The practical outcome of this result is that a frequency 

analysis of adjacency relationships becomes difficult, and is not attempted fo1111ally in this 

thesis. Therefore, rather than pursue this theory of pattern classification, we examine its 

implications for describing pattern construction in subsection 3.5.3. 

Schattschneider's ( 1986) article described a design technique to generate tilings or 

patterns of a rosette (a design inscribed in a circle), a border (a frieze design) and a 

wallpaper design. She argued that this approach allows the designer to control the artistic 

'input' by creating the tile or motif. She also used the idea of a minimal set of generators, 
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and constructs a table of them for each frieze group. A similar table appears in subsection 

4.3.4. She explained that: 

"Using this table, a designer can choose a motif, decide the symmetry type of design to create, 

place the motif in a suitable generating region and use a minimal set of generators (properly 

positioned) to create the desired border design. " 

Schattschneider makes an interesting comment which concludes this brief discussion of 

adjacency relationships: 

"Although the number of isometries in a minimal set of generators for a design is unique, the 

choice of these isometries is not always unique." 

This means that there is often more than one way of using symmetries to generate a 

particular frieze design and furthermore, not all the symmet1ies present in a pattern are 

needed to produce it. Some implications of this observation are discussed in more detail 

in chapter 4 of this thesis . 



3 Methodology and Analysis 

3.1 The General Approach 

3.1.1 An Overview 

In this thesis, the working definition of intuitive transformation geometry in frieze 

palterns is the informal, non-accidental presence of transformations or symmetry in a 

frieze design. Two research methods were employed to explore this topic, and involved 

subjects from three age groups: Standard Three and Four students, Form Four students, 

and First-Year Tertiary students. Firstly, a survey was conducted to identify any nom1s 

and help raise relevant questions with respect to the topic (Johnson, 1980). The overall 

objective of this data collection was to set tasks which revealed the presence of 

transformations in these patterns. This approach had two different, but related facets: 

'perception' and 'representation' activities. 

The 'perception' survey, activity (c), involved the wri tten description of seven frieze 

patterns, each pattern an example of a different frieze group. Two representation surveys 

were conducted, both of which involved the construc tion of frieze designs. The first 

representation survey, activity (a), had very few restrictions, the second, activity (b), 

confined the students to the use of a particular asymmetrical shape. For each age group, 

the representation casks were set before the perception task in order to prevent the patterns 

presented in the perception task influencing the construction activities. 

The second type of research method employed was the use of case studies; specifically, 

interviews were conducted with ten Primary school children who had participated in the 

surveys. Explanations of their intentions and understandings of the survey tasks were 

encouraged and further construction and 'matching' tasks were seL 
( 

3.1.2 The Subjects 

Given that a key factor of intuitive concepts is that they are infonnal, it seemed natural co 

choose subjec ts who were as young as possible and yet were capable of the tasks 
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required. In this respect, Standard Three and Four children appeared to be the most 

appropriate group on which to focus. 

The justification for this choice is as follows. While most children can distinguish one 

orientation from another, Piaget and Inhelder (1956) claimed that the skills required to 

make differential responses or explicit reference to the orientation of an object in space do 

not develop before the age of nine years (Howard, 1982). More importantly, although 

some rese_arch has suggested that the age may be younger, Piaget and Inhelder ( 1971) 

also proposed that it was not until the age of nine that children are capable of 

understanding the three 'basic' operations of translation, reflection and rotation. Hence, 

the ability to describe most transformations (in some form) may not be available to 

children before this age, thereby thwarting the aims of activity (c). 

Secondly, the restriction in activity (b) required the subjects to use only right-angled 

(scalene) triangles, a shape too difficult to draw for many eight year olds. Indeed, the 

geometry component of the Syllabus for Schools (1985) booklet indicated that children 

are not taught the concept of 'perpendicular' until the age of nine, and the pilot study 

conducted at Colyton Primary School suggested that even some nine and ten year old 

children struggle with the concept of a right angle. This finding is also consistent with 

Kerslake's (1979) conclusion that the orientation of a right angle affects children's 

identification of it up to ten years of age. 

Obviously, Standard Three and Four children are not as intuitive (i.e., info1mal) in their 

conceptualizations as younger Primary students (for example, in Booth's 1975 study). 

Nevertheless, while the exploration of symmetry and the use of transformations is not 

new to children of this age, the consideration of transformation geometry by Standard 3 

and 4 students has not been particularly reflective or formal, as both Lesh (1976) and the 

mathematics syllabus for the year 1-6 children (1985) indicated. 

Older groups at the 'during-formal' instruction stage (Form 4) and 'post-formal' 

instruction stage (Year 1 Tertiary students) were also surveyed to evaluate the effect of the 

more formal transformation framework, as well as cognitive development, on the 

patterns. Due to the limited time available at the post-Primary institutions, only activities 

(b) and (c) were conducted at these levels, with the exception of one Form 4 class that 

participated in activity (a) also. No interviews were conducted for the during- and post­

formal groups. 
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3.1.3 Organisation 

Letters were sent to the principals of various Primary and Secondary schools to explain 

the purpose of the study and to seek permission to survey students of the required age. In 

addition, consent was obtained to select a few Primary school students for interviews of 

approximately 40-60 minutes. At the Tertiary level, license to survey first year Tertiary 

students was procured by approaching a number of mathematics education lecturers at the 

Palmerston North College of Education. In short, a class only took part if the teacher was 

willing to participate in the study. For the post-Primary groups, a one-hour block was 

usually granted, which allowed time for activities (b) and (c) to be easily completed 

without any time pressure imposed on the students. 

The schools and classes participating in the study were from around the Palmerston 

North/Manawatu region and are listed below: 

1. Colyton School (pi lot study), Standard 3 and 4's; teacher: Sue McDowall. 

2. St. James' School, Standard 4's; teacher: Barry Slade. 

3. Winchester School, Standard 4's; teacher: Jane Gilliland. 

4. West End School, Standard 3 and 4's; teacher: Ross Richdale. 

5. Takaro School, Standard 3 and 4's; teacher: James Kendrick. 

6. Awatapu School, Form 4's; teacher: Jim Wilkinson. 

7. Awatapu School, Form 4's; teacher: Michelle Wheatley. 

8. St. Peter's College, Form 4's; teacher: Marion Roser. 

9. Queen Elizabeth College, Form 4's; teacher: Neroli Field. 

10. Palmerston North College of Education, Division A Year l's ; lecturer: Gus 

Hubbard. 

11. Palmerston North College of Education, Division A (bilingual) Year l 's; lecturer: 

Gus Hubbard. 

12. Palmerston North College of Education, Division AS Year l's; lecturer: Gus 

Hubbard. 

13. Palmerston North College of Education, Division A Year 1 's; lecturer: Vivienne 

Bryers. 

14. Palmerston North College of Education, Division A Year l 's; lecturer: Barry Brocas. 

15. Palmerston North College of Education, Division A Year l 's; lecturer: Ian Stevens. 
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3.1.4 Environment and Data Collection 

Physical Environment 

All exercises were conducted in a classroom setting, with children sitting at their desks. 

Data Collection 

Time was allowed for the everyone to finish. The activity sheets were collected shortly 

after the last person had finished. Anyone who finished before this time was asked to turn 

their sheet face down (to avoid others 'copying' their efforts), and were set other tasks so 

as not to disturb those who were still creating patterns. 

In sections 3.2 , 3.3 and 3.4, a more specific outline of the methodology of the survey 

activities is given. Details of the interviews can be found in section 3.5 . 

3.2 Unrestricted Pattern Construction: Activity (a) 

3.2.1 Subjects 

The Primary school subjects were 99 nine-to-ten year olds (F = 54; M = 45 ). The 

Secondary subjects were 19 founeen year olds (F = 8; M = 11 ). 

3.2.2 Procedure 

Design 

One of the aims of this exercise is engage the creative processes of the participating 

individuals so that a full range of patterns is produced. Wallach and Kogan (1965) 

explained that the essential character of creativity may be contained in two facets, namely, 

"the production of associative content that is abundant", and a "playful, permissive task 

attitude." Thus, the appropriate variables to index individual differences in creativity are 

numeracy and relative uniqueness. 

While these measures were recorded , they are not of primary interest here. What is 

important is how to enhance the creative process in the construction of the frieze patterns. 

Wallach and Kogan offered the following advice: 
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" ... tht: as:;l!ssmcnt context must be quite diffaent from the kind utilized in the studies reviewed; 

there should be freedom from Lime pressure and there should be a playful, gamelike comexl rather 

than one implying that the person is under a test." (p 289) 

From this suggestion, a number of features were built into the design of activity (a). 

Firstly, the students were allowed as much time as they wished to complete the exercise. 

Secondly, the exercise was presented and reiterated to the participating students as a fun 

acciviry, not a test. Almost all responded well to this approach. Related to this point, the 

strips given were not numbered, and the students were encouraged to do as many as they 

could with the proviso that they could stop whenever they wished. Furthermore, the 

students were encouraged to create any pattern they wished, so long as it had some 

repetition in it. The freedom that the subjects had in their designs was reinforced by 

written instructions on the activity sheet and by oral instruction several times throughout 

this exercise. 

Materials 

Students were provided with two sheets of paper with lines denoting the borders of the 

strips (See appendix El). Between successive strips, asterisks were placed to avoid nny 

confusion in the subjects about where it was on the page that they were supposed to 

construct their patterns. A total of 16 empty strips were provided, with the instruction at 

the top of the sheet to "fill in as many of the following strips as you can (in any way you 

wish) to make different repeating patterns." It should be pointed out that the word 

'pattern' seems to be quite vague to many students; it means something like 'regular 

design'. Therefore. the word 'repeating' was also included to distinguish it from some 

random mess (which was also explained to the students orally), and had the second 

motivation of encouraging students to make designs with translation symmetry, that is, 

frieze patterns. 

Instructions to Subjects 

All the Primary school sessions began with an introductory game, allowing time for the 

children and the researcher to gain some familiarity with one another. At the Secondary 

level, this introductory component was more brief. The sheets were handed out and the 

instructions explained as follows: 

1. Only a pencil and rubber were to be used. This was to avoid colour symmetry, an 

aspect of frieze patterns not considered in any depth in this srndy; as a result of 
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shading, some two colour patterns did emerge. Also, from the pilot study, the use of 

rulers appeared to slow the rate_ of progress considerably so these were excluded from 

the process. 

2. The students could fill in the strips in any way they wished, provided the resulting 

pattern had some repetition in it. This point was repeated to the students as the activity 

progressed. The students were asked not to copy another student's work but to create 

their own patterns. 

3. The subjects were encouraged to make as many patterns as they could. Each pattern 

drawn was to be different from any others they had made. They were to take as much 

time as they wanted. They did not have to fill in all the strips, and they could stop 

whenever they wished. Those who finished early were given another design task to 

keep them occupied, and to avoid distracting the other students. Generally, all 

students had stopped working on their patterns after 20 minutes. 

4. Students were asked to put up their hand if they had any questions so that any ideas 

they had wouldn't influence the whole class. 

Instru ctions to Teachers 

The instructions given to teachers were minimal. They were asked to answer any 

student's question during the activity by reiterating the points that: the student can fill in 

the snip however she, or he, wishes, so long as there is repetition in the pattern; the 

student was to make as many patterns as possible and; the student could stop whenever 

she, or he, wanted to. Furthermore, in a simi lar manner to Booth (1975), any comments 

on students' patterns were to be positive and devoid of criticism or phrases that might 

suggest either representation or non-representation. 

3 .2 .3 General Quantitative Analysis 

A frieze group classification of the patterns drawn was made. Since a frieze group is 

made up of various types of symmetries, it was hoped that this classification would give 

some clues to the intuitive use of symmetry in the patterns drawn. Two other categories 

were also included to allow for the possibility that designs may not display translation 

symmetry (No Translation Symmetry) or that the underlying frieze group of the design 

was ambiguous (FG Unclear). These, and other anomalies are di scussed with extensive 

illustrations. 
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Four measures were devised, each an attempt to indicate 'how intuitive' a pattern's 

symmetries were. Respectively, these were: 

l . Fre quency. This indicator examined the total numeracy of each frieze group. If 

studen ts produced a lot of examples of one frieze group in comparison to another 

frieze group, then it seems reasonable to conclude that the particular set of symmetries 

in the frequently produced pattern are likely to be more intuitive than those of the 

infrequen tl y produced pattern. 

2. Communality. This indicator examined the number of students producing each frieze 

group. If a lot of students produced examples of a particular frieze group , then the 

associated set of symmetries are likely to be more intuitive than the set of symmetries 

from an unpopular frieze group. 

3. Average number produced*. The asterisk indicates that the average was calculated on 

the students who actually produced an example of the frieze group in question. This 

measure indicated whether students who made a particular frieze group tended to 

make only one of them, o r whether they tended to make more. The impl ications to the 

relative ' intuitive-ness' of symmetries is simi lar to the comments given for the 

frequency measure. 

4. The firsc chree pauerns produced. Intuition, as noted above, often connotes an 

immediace apprehension , indicating that the first pattern s produced could be the most 

intuitive to the child. Differences between thi s measure and the frequency measure 

were therefore noted. 

Further refinements were made to the frieze group classification in an effort to gain clues 

about the processes which may have occurred to produce the respective frieze patterns. 

The broadest categorization was the distinction made between disjoint and connected 

pattern s, suggesting that a pattern was made as repeating 'parts' or as a 'whole' 

respectively . Examples are given below: 

Figure 3.1 (Exa mple ol' a Disjoint Frieze Pattern ) 
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Figure 3.2 (Example of a Connected Frieze Pattern) 

A connected frieze pattern is one which has a filamentary subset or, more loosely, some 

pan of it extends the length of the snip and can be rraced without lifting one's pencil. Any 

frieze pattern without this propeny is considered to be disjoint. A separate category (Not 

Sure) was made to allow for ambiguities between these two pattern kinds. From the 

mathematical classifications outlined in section 2.4, it certainly appears as if further 

refinements could be made to this classification. However, a substantial percentage of the 

activity (a) patterns displayed ambiguity at this level of categorization, so this refinement 

was abandoned. The frieze group/kind classification was determined by the following 

steps: 

Step 1. Does the pattern display some evidence of translation symmetry? (i.e., are there 

two translation units?). If so, goto step 2. If not, then record it under the 'No 

Translation Symmetry' category and goto step 3. 

Step 2. Can the underlying frieze group of the pattern, when imagined to be extended 

infinitely in each direction, be identified unambiguously? If so, identify and 

record the underlying frieze group and goto step 3. If not, then record it under 

the 'FG Unclear' category and goto step 3. 

Step 3. Can the pattern kind be identified unambiguously? If so, identify and record the 

kind (disjoint or connected) of pattern.and stop. lf not, then record it under the 

'Unsure' category and stop. 
1 

3.3 Restricted Pattern Construction: Activity (b) 

3.3.1 Subjects 

The Primary school subjects were 99 nine-to-ten year olds (F = 54, M = 45). The 

Secondary subjects were 85 founeen year olds (F = 42; M = 43). The Tertiary subjects 

were 69 First-Year students of various ages (F = 51; M = 18). The ages of the College of 
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Education students varied between 18 and 45 years, ancl their mathematics background 

ranged from f-01111 4 LO Second Year university courses. 

3.3.2 Proced ure 

Design 

The overall design of this activity was very similar to that of activity (a). The difference 

was that in activity (b), the subjects were required to only use right-angled scalene 

triangles in their construction. On the surface, the purpose of this restriction may not 

seem obvious, but it had a definite motivation. One of the possibi li ties in activity (a) is 

that symmetries of the whole pattern can be present as a consequence of quite arbitrary 

choices of variables such as the spacing, the number, the position, and the combination of 

elements in the translation unit. This theoretical prediction was verified in the interview 

material (see subsection 4.3.4). Therefore, Lo reduce this occurrence, it was decided to 

allow the students to only use a C 1 shape (i.e., an asymmetrical figure) i11 the 

construction of their pallerns. 

The shape of the right-angled, scalene triangle was chosen for the following reasons: 

I. Unl ike some asymmetrical figures, it can be drawn by nine and ten year olds. 

2. Unlike some asymmetrical figures, it is easy to orientate its sides vert ically and/or 

horizontally, or align the sides with the border lines or other triangles. These 

possibilities appear to be natural preferences according to much of the literature 

reviewed in this thesis. 

3. Unlike most asymmetrical figures, it can be used to make a variety of different styles 

of patterns, that is discrete, non-d iscrete, touchings, tilings and filamenta ry patterns. 

Sec suhscctioi1 3.3J rm runhcr details. 

4. Unlike some other asymmetrical figures, the spacing or the right-ang le triangles does 

not inrluence the overall symmetry of the resulting frieze paltcrn. 

From a mathematical point of view, it may well be that no other shape satisfies all four 

properties listed above. However, while the analysis is stronger than that for activity (a), 

in that 'accidental symmetries' are avoided to a greater extent, it is also weaker in the 
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sense that the parricular choice of a C1 figure (a right-angled, scalene niangle) may affect 

the construction methods and, therefore, the patterns produced. 

Materials 

(See appendix E2). Materials for activity (b) were identical to those used in activity (a) 

except that the printed instructions included the added restriction that the subjects could 

only use the shape: 

/) 
Figure 3.3 

Instruction to the Subjects 

Instructions were almost identical to those for activity (a) with a few exceptions related to 

the restriction imposed. For example, the session began with a series of diagrams 

displaying examples and non-examples of right-angled, scalene triangles, which were 

presented and discussed in an attempt to familiarise the subjects with the concept. The 

main motivation, of course, was to prevent other symmetrical triangles from bein2: 

drawn. Students were free to ask if their triangles were right-angled or not, and this was 

checked by the researcher during the activity. 

Instruction to the Teachers 

Instructions to the teachers were very similar to activity (a) except that questions relating 

to the 'correctness' of the right-angle triangle were to be answered by the researcher. In 

order to prevent suggestive comments, the range of answers to these questions was 

limited. Most explanations didn't comment on the specific niangle that had been drawn in 

order to allow the subject to make the final evaluation for themselves. Instead, comments 

usually referred to the diagrams discussed in the introduction to the activity. 

3.3.3 General Quantitative Analysis 

The quantitative analysis employed for the resnicted pattern construction exercise used the 

measures of numeracy, commonality, average number drawn*, and the first three drawn 

to indicate the relative 'intuitive-ness' of the seven frieze groups. The first three of the 
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four measures were also applied to a refinement of the frieze group classification, namely 

pattern styles. 

The analysis of activ_ity (a) considered pattern kinds, that is, disjoint and connected. This 

analysis divides the disjoint category into discrete and non-discrete patterns, and the 

connected category into touchings and tilings/filamentary. It is a fairly straightforward 

task to derive the formal definitions of these terms from Grilnbaum and Shephard's 

(1987) theory. These, and the more informal explanations of the patterns styles, are listed 

below: 

Discrete frieze patterns are defined and illustrated in subsection 2.4.3. Loosely, it can be 

thought of as a frieze pattern with connected motifs that aren't arbitrarily close to one 

another and are pairwise-disjoint. In addition, all the isometries that map one motif onto 

another must also map the pattern onto itself. The particular henomeric type was also 

recorded in this case. 

A non-discrete frieze pattern has the special meaning that it is a disjoint strip design which 

fails to satisfy one or more of the conditions P.3, DP. l or DP.2, as defined in 

subsections 2.3.3 and 2.4.4. This roughly means that the pattern's motifs are 

disconnected or can map onto one another without necessarily mapping the whole pattern 

onto itself; the other possibility is that the pattern contains motifs which are arbitrarily 

close to one another. An example follows: 

000 O 000 O 
00 00 

Figure 3.4 

000 C 
0 

A touching frieze pattern is a little difficult to define precisely, and a loose definition is 

given. Essentially it is a connected pattern, made up of bounded motifs which do not 

form a tiling of the strip, and are not filamentary patterns. An example is given below: 

< 

Figure 3.5 
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Tilings of the strip andfilamentaryfrieze pattems are described in subsections 2.4.3 ,tnd 

2.4.4. The following ambiguity, which can be described as a filament contained in an 

asymptotic srrip, requires the latter two categories to be grouped together: 

Figure 3.6 

Mathematically, this is a tiling of the strip and not a filamentary pattern, since the 

definition of a filamentary pattern requires the filaments to be pairwise congruent and 

pairwise disjoint. However, this definition obviously ignores the fact that a 'filamentary' 

process can be used to construct the pattern shown above. Since it is not possible lo 

know the intention of the drawer with any certitude, and since 'filamentary' patterns can 

not arise without the use of the boundary lines (because of the particular restriction 

imposed), tilings and filamentary patterns were not distinguished in activity (b). Finally, 

when the occasional ambiguity arose between styles, it was recorded as 'Unsure.' 

The steps for classifying an activity (b) pattern were similar to those for activity (a), 

except that the 'No Translation Symmetry' and 'FG Unclear' categories were not split up 

into style categories. Thus the steps were: 

Step l. Does the design display evidence of translation symmetry? If not, record this as 

'No Translation Symmet1y' and stop, otherwise goto step 2. 

Step 2. ls the frieze pattern's underlying symmetry group clear? If not, record this as 

'FG Unclear' and stop, otherwise record the pattern's underlying frieze group 

and goto step 3. 

Step 3. ls the pattern's style clear'? If not, record this as 'Unsure' and stop, otherwise 

record the patterns style. If lhe style is discrete, record its henomeric type and 

stop. 
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3.4 Frieze Pattern Description: Activity (c) 

3.4.1 Subjects 

The Primary school subjects were 79 Standard Three and Four students (F = 40; M =39). 

The Secondary subjects were 91 Form Four students (F = 52; M = 39) and the Tertiary 

students were 69 Year 1 College of Education students (F = 51; M = 18). 

3.4.2 Procedure 

Design 

In this activity, the focus is on the manner in which a subject perceives a frieze pattern 

and relationship this perception has to intuitive transformation geometry. In order to do 

this methodically , an example of each of the seven frieze patterns were presented to the 

subject and a written description was asked for. While a 'written' description approach 

has obvious shortcomings, panicularly for the Primary school subjects, it appeared to be 

the only way of collecting the data efficiently. 

The selection of the seven frieze patterns was made carefully. Firstly, it was decided to 

reduce 'distractors' as much as possible. For example, a standard asymmetric motif (i.e., 

a right-angled, scalene triangle) was used in all seven patterns, and the spacing between 

adjacent motifs was as uniform as possible. so that any perceived grouping of the motifs 

would be more likely to be based on some other criterion. Also, all the patterns were 

discrete and primitive. These properties were chosen so that all symmetries underlying a 

pattern had the same 'status', that is, all transformations or symmetries identified must be 

'between' motifs, and not 'within' a motif. 

Materials 

Materials consisted of 4 sheets, each with two patterns on it (apart from the last sheet). 

Below each pattern were 8 lines which could be used to write on . This proved to be 

ample space for all but a few students. The printed instructions simply said "Please 

describe the following patterns." (See appendix E3). 
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/11structio11s to the Subjects 

Again, instructions .were kept to a minimum. The subjects were asked to describe the 

patterns on the sheet. Once one pattern was finished, the subjects should move on to the 

next one. If subjects showed any confusion about the task, supporting comments such as 

"write what you see" or "imagine you're describing it to someone" were used. 

Instructions to the Teachers 

Teachers were asked to avoid using suggestive comments such as "write down what it is 

like", or "what does it remind you of?", or even "how would you make it?" 

3.4.3 Analysis of Frieze Pattern Descriptions 

The analysis method employed was devised after the exercise was completed so as to best 

reflect the descriptions made. The categories that arose showed similarities to some of the 

relevant literature, and so terminology from Booth (1975), Howard (1982) and Piaget 

and Inhelder (1971 ) was utilised to describe the classes. A brief description of the 

categories follows: 

A . Explicit Phrases: These expressions indicate one or more of the four rigid 

transformations - translation, reflection, rotation, and glide reflection. They may refer to 

these transformations as motions of some set of points or as the symmetry of some set of 

points. These sets of points may be the whole pattern or some finite subset of it. 

Expressions which are ambiguous with respect to the transformation they are indicating 

are labelled undifferentiated. 

Al. Differentiated expressions indicate particular transformations or symmetries in 

such a way that they can be distinguished clearly from other transformations. For 
I 

example, "then it repeats" implies translation, and "fold it over" implies reflection. 

A2. Undifferentiared expressions describe a relationship between two congruent 

objects, but not in a way that a transfonnation can be unambiguously identified. For 

example, "turn it upside down" is clearly a transformation, but it may mean a 

horizontal reflection, a half-turn or even a glide reflection. These phrases report the 

relative orientation or relative direction of two objects; usually two right-angle, 

scalene triangles. The recognition of congruence is also included. Some of these 
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descriptions are more suggestive of transformation geometry than others, but no 

distinction is made here. 

B. Implicit Phrases: Sentences in this category make a comparison of a set of points in the 

pattern with another object or set of points not in the pattern. They characteristically share 

the same symmetries or even symmetry group. The most implicit examples occur when 

the objects used for comparison are drawn from the stimulus domain, that is, when a 

simile or metaphor is used to describe the pattern. 

Bl. Comparison of Whole Pattern to another object. In this case, the 'whole' pattern 

(at least, the portion displayed on the page) is given a entity as another object. For 

example, "this pattern looks like a chain saw blade". 

B2 . Comparison of Parts of Pattern to another object. This comparison gives each 

part of the pattern, generally the motif or base pattern, an entity as another object. For 

example, two 'proximate' triangles with a reflection between them may be described 

as a "bird's beak". 

C. Orientation and Directional Judgements involve the description of the orientation or 

direction of individual objects in an egocentric or exocentric fashion. These expressions 

attempt to establish the orientation of each triangle individually, most often within the 

base pattern. Because no mention is made of the relative orientation of objects , the 

presence of intuitive transformation is implicit at best, and may not be present at all. For 

example, "In the first triangle the right-angle faces to the left, and in the second triangle it 

faces to the right." 

D. Position Judgements describe the estimations or measurements of distance between 

objects. They also include the position of triangles relative to the strip, or relative to each 

other. Often expressions like "top", "bottom", "in the air", "on the ground", "above" and 

"in rows" are used. 

E. Miscellaneoµ,s Descriptions include a number of different descriptions such as the 

enumeration of the triangles in the pattern, or stating the intrinsic properties of a triangle 

(e.g., right angle, scalene). Other responses include the use of criteria such as the 

grouping the triangles, order, and separation as sketched by Copeland (1979) of Piaget's 

topology thesis. See part one of Holloway's (1967) summary for further details of 

Piaget's work in this area. Finally, subjective opinions of the pattern are also included 

(e.g., "very, very fancy"). All these descriptions have been grouped together since the 
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likelihood that they indicate intuitive rransformation geometry seems small. However, in 

the comparison of the three age groups, this category was split into three classes 

(topological judgements, motif properties, subjective evaluations), since the number of 

responses in each class was large. 

3.5 Intervie,vs 

3.5.1 Subjects 

After all the survey activities had been completed, the patterns and descriptions of the 

Primary school children were broadly analysed, and a total of ten students (F = 6; M = 4) 

were selected. These were students which showed some evidence of intuitive 

transformation geometry, such as producing a number of different frieze groups or using 

phrases in their descriptions which suggested some form of symmetry or transformation. 

The number of students selected from each school was in rough proportion to the number 

of students (n) who were surveyed in all three exercises. 

A list of the interviewed children's names (pseudonyms) and their respective schools is 

given for rderence in chapters 4, 5 and 6: 

St James' School (n = 22): Mary , Alice, and Carla. 

Winchester School (n = 25): Kate , Amy and Toni. 

West End School (n = 24): Rachel, Mark and Aden. 

Takaro School (n = 6): Richard. 

3.5.2 Aims and Design of Interviews 

Many patterns do not require a great deal of examination before it becomes obvious that 

the manner in which they were constructed is not clear. Indeed, in most cases, a certain 

amount of guesswork is required to describe a likely construction method. Furthermore, 

many factors within a pattern can affect its symmetries, and the intentions of the creator 

may not be obvious with respect to these factors. Therefore, the purpose of the interviews 

was to discern the intentions behind some of the patterns constructed, and to determine 

the process by which a pattern was created. Behind both of these aims was the overall 

objective of gaining some insight into the consideration of how children conceptualize 

rransformation geometry in frieze patterns. 
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For activity (c), the pattern description exercise, the purpose was to ask the subjects what 

they meant by their descriptions and to expand or modify their descriptions if they 

wished. One reason for doing this is that the possibility that the students did not write 

everything they perceived was probably high, as Wheatley suggested (1978). In fact, 

Choat (1974) made a similar observation in an interview situation with 'Johnnie': 

"He had grasped the configuration of the relationship but did not possess the language necessary to 

express his thoughts" (p 9) 

Given these aims, the natural interview technique appeared to be that of the clinical 

interview, or the indirect approach (Lesh, 1976). By employing this technique, we were 

not so much interested in the actual cognitive processes of a child as we were with the 

nature of a child's concepts (Lesh, 1976). Mulhern (1989) explained that an important 

function of the clinical interview is to evaluate understanding in children. He continued: 

" .. . clinical techniques are ... seen as particularly usefu l for studying young children . ... these 

methods allow the researcher to probe children's mathematical thinking much more deeply than 

other techniques, such as pencil and paper methods." (p 48) 

The character of a clinical interview is quite different to that of other procedures such as 

the 'thinking aloud' technique. It is chiefly an indirecr research method. Lesh (1976) 

explained that an approximate analogy of the indirect method to twenty questions (or to 

the process a police artist uses to construct a picture of a criminal) could be made, in that 

the approach centres in on an idea by finding out what the idea is not. He supports the use 

of the indirect method by reiterating a theme of his article: 

" .. . it is important to occasionally use indirect research techniques. Otherwise, it is very easy to 

impose inappropriate mathematical structures on the thought processes of children." (p 234) 

However, he finished by noting that the direct approach eventually becomes necessary if 

generalizations are to be made. 

The clinical interview is based chiefly on the methods of Piaget, and does not employ 

standardized questions so much as following the thoughts of the subject wherever they 

may lead and asking questions related to the responses of the interviewee. Thus it 

involves a large amount of flexible questioning, including the use of various materials. 

Indeed, as a 'follow-up' to activity (c), three new matching tasks were pursued. The first 

task involved asking the subject to indicating if any of the seven frieze groups in activity 
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(c) appeared similar and to say why if possible. For ease of comparison, the frieze 

patterns were presented to the subject on (green) cards so that she, or he, could shift them 

around and 'explore' different combinations; the seven patterns can be seen in appendix 

Cl. The second task involved the matching of the 'green' patterns with another set of 

seven frieze patterns, also mounted on cards (red). The 'red' examples were discrete and 

primitive, with only the motif differing from that of the 'green' patterns (see appendix 

C2). Similarly, the last task involved the matching of seven examples of filamentary 

frieze patterns, mounted on beige card (see appendix C3), with the 'green' patterns. 

Another activity component of the interviews was the construction of vertical patterns, 

that is, the strip to be filled in was aligned vertically with respect to the drawer. 

In conclusion, while the clinical method has strengths, and is probably the most suitable 

method for this study, the obvious pitfall of such a technique is that: 

"st.andardizmion is sacrificed because not all the subjects are asked the same questions." (Lesh , 

1976, p2 16) 

3.5.3 Analysis of Interview Material 

Analysis of Interview Resp~nses to Activities (a) and (b) 

The analysis of the interview material from activities (a) and (b) aimed to describe the 

method employed to make the patterns, and how the children understand the process they 

used. Thus the analysis was a description of the order in which a pattern was constructed, 

as well as an examination of the child's language used to describe the process. In the 

former case, a number of pattern construction trends emerged , and the use of 

mathematical terminology was used to describe and group the common design methods. 

In particular, the pattern construction analysis was a synthesis of applications of Kelly's 

(1990) and Schattschneider's (1986) theory, as well as terminology drawn from 

GrUnbaum and Shephard's (1987) book (see section 2.4 above). Other definitions were 

created where necessary . These modifications, parallels and new definitions may not be 

'standard', but seem justified, as Gri.inbaum and Shephard ( 1983) write: 

"Could it be that we mathematicians .. . have cowed generally reasonable people into unreasonable 

att.itudes? If so, would it not be desirable to change the situat.ion and to give the various 'users' of 
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mathematics the theories applicable to their concerns? ... if we arc to provide the mathematical 

tools for their disciplines we should develop the appropriate 'geometrics'." 

Two types of construction algorithms ensue from the incidence theory mentioned above: 

base pattern construction and incidence construction. Essentially, the first method 

involves the construction of some generating region (Schattschneider, 1986) and then 

translation of this region. The second approach uses a motif, copies of which result under 

some set of transformations. For both constructions, we let .h be a strip in the plane of 

width w and chose t* to be the shortest translation symmetry of the design. The algorithm 

for the respective methods are as follows. 

A Base 'Pauern' Construction 

1. Draw some motif, A 1, so that it lies in .h. 

2. For i = 1, 2, ... , n-1 draw (in .h) the image Ai+l = Ai(Ai), where n is the 

smallest positive integer such that An= t*(A1) and Ai is an isometry. 

3. The collection of images A1, A2, ... , An-1 is called the base pattern. This set is 

translated by t* to generate a frieze design. 

/-~ ....... 

....... _._.,,,, 

Figure 3.7 (A Base Pattern Construction) 

An Incidence Construction 

1. Draw some motif A1, so that it lies in .h. 

2. For i = 1, 2, ... draw (in h), the image Ai+l = Ai(Ai) where Ai is some 

isometry. 

If n is the smallest positive integer such that An= t\A1), then the ordered n-tuple 

(A 1, A.2, ... , An) is tenned an incidence sequence of the resulting frieze pattern. 
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If Ai and Ai+ 1 are the same type of symmetry, for i = 1, 2, ... , n-1, then the 

resulting frieze pattern is said to have ). incidence of order n. For example, if, in 

an incidence construction, the isometries are all vertical reflections, then the 

resulting pattern is said to have vertical reflection incidence of order 2. 

Figure 3.8 (An Incidence Construction) 

In one special case, the two constructions methods are identical. This occurs when the 

base pattern is the motif A1, and the incidence construction (with the same motif A1) has 

an incidence sequence consisting oft* only. 

It also turns out to be useful to describe information about a motifs orientation if its 

underlying symmetry group is dihedral. We shall adopt the following notation, assuming 

that the direction 'horizontal' is parallel to the direction of translation symmetry of the 

(resulting) frieze design. A dihedral motif Dn and its orientation is denoted by: 

D11(v) if it has a vertical line of symmetry; 

Dn(h) if it has a horizontal line of symmetry, but no vertical line of symmetry; 

Dn(n) if it has neither a vertical nor a horizontal line of symmetry. 

It should be noted that there are three possible orientations when n is odd, and only two if 

n is even (since (h) is not possible in this case). 

Other construction methods are possible. such as a tiling or a filamentary construction. 

The first method involves the copying of some closed shape in order to fill the strip in 

regular manner, and is closely related to the incidence construction described above. The 

second method involves drawing a closed curve (from left to right) across the strip .,. 

without the designer lifting her, or his, pencil. 

Combinations of the four construction methods are also possible. A more comprehensive 

description of the construction methods and the associated ambiguities and subtleties is 

given in sections 4.4 and 5.4. 
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Besides the consrruction analysis of the unrestricted and restricted patterns, a simple 

frieze group classification of the vertical patterns drawn by the interviewed subjects was 

made. The results were compared to the corresponding frieze group distributions of the 

horizontal patterns. With such a small sample (n = 10), the comparison was only intended 

to be suggestive. 

Analysis of Activity (c) Interview Material 

The language used to describe the construction processes above, and the children's oral 

explanations of their activity (c) written descriptions, were analysed using the categories 

and terminology from the survey analysis of activity (c). 

A tabulation of th~ matching exercise was made. The descriptive analysis of the matching 

activities was based on a modified version of the classification used by Piaget and 

Inhelder (1971) in a chapter entitled The Spatial Image and 'Geometrical Intuition'; their 

matching activity differed in that it involved the estimation of the relative lengths of 

inscribed and circumscribed shapes. The list of criteria is given below; it should not be 

confused with the classification of the language used in the patterns construction or 

description activities: 

A. No justification, invalid justifications, or straight forward descriptions or tautologies. 

B. Criteria based on position or order. 

B 1. Evaluations based on surroundings and interiority. 

B2. Evaluations according to boundaries: order of extremities (projection or 

convergence) and points or proximity. 

B3. Evaluation based on upper and lower position. 

C. Criteria based on the general shape, or on the composition of the parts. 

Cl. Evaluation based on shape or global area. 

C2. Evaluation based on free spaces and gaps. 

C3. Evaluation in terms of number and size of constituent parts. 

D. Crite1ia based on orientation or direction of parts. 

D 1. Evaluation based on orientation or direction judgements. 

D2. Evaluation based on relative orientation or direction. 

E. Criteria based on transformations. 



4 Results 
Pattern 

of the Unrestricted 
Construction Activity 

In this chapter trends in the unrestricted construction of frieze patterns of the Primary and 

Secondary students are examined1, and an attempt is made to link these trends to intuitive 

transformation geometry. This is achieved by a general presentation and quantitative 

analysis of the patterns drawn in activity ( a). This approach is supplemented by a 

descriptive analysis of the patterns, as well as selected interview material from 10 case 

studies that strengthens or qualifies the survey results. 

The unrestricted exercise, activity (a), required the participants to fill in as many of the 

sixteen empty strips as they could with 'repeating patterns', each strip having a different 

pattern from the rest. For further discussion of the instructions and design of this activity, 

see subsection 3.2. Detailed tables of the results for this chapter (and the next) can be 

found in appendices A (and B). Several important aspects of the survey are selected from 

this data summary and are presented in the form of column charts throughout chapters 4 

and 5. 

Unlike Kilchemann's (1981) generic use of the word, 'children' refers only to the 

Standard Three and Four subjects; not to the Form Four or College of Education 

students. When a specific group is being referred to this will be made explicit. 

4.1 Survey Results from the Primary Schools 

4.1.1 Frieze Group Analysis 

Table A 1.1 can be interpreted as follows. For each of the seven frieze groups, as well as 

the 'Frieze Group (FG) Unclear' and 'No Translational Symmetry' classes, there is a 

corresponding row of figures. Respectively, these indicate the numeracy or each frieze 

pattern, the percentage that number was of the total number of drawings, the number and 

percentage of students who actually produced them, and the average number of patterns 

produced by those who drew them (as well as by the class as a whole). For instance, 254 

(18%) of the 1385 patterns produced by the children can be classified as pmm2. Of the 99 

Primary students surveyed, 75 (76%) drew at least one example of this symmetry group. 

1 For convenience of presentation, the patterns displayed in this chapter arc 80% of their original size. 
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Those who did draw a p112 tended to draw more than 3 on average, whilst the average 

over the whole class was a little under 3 since most, but not all, of the Primary students 

made patterns in this symmetry group. 

Graphs 1, 2, 3, and 4 summarize and display four attempted 'indicators' of intuition 

present in tables Al.1 and Al.2, namely: frequency, commonality, the average number2 

drawn*, and the first three patterns drawn. All four of these column charts furnish a 

similar 'skyline' profile, suggesting a relative 'intuitive-ness' of the seven frieze groups. 

This ordering for the frieze groups seems to be: 

1. pl 11 and pmll 

2.pmrn2 

3. pma2 and p112 

4. plml 

5.plal 

(common and frequent) 

(uncommon and infrequent) 

The 'Frieze Group (FG) Unclear' and 'No Translation' categories have not been included 

in this list since the former doesn't reveal anything quantitatively about symmetries of 

patterns (because the symmetry groups are ambiguous), and the latter doesn't include 

frieze patterns which are the focus of this research. Note that the class 'Can't Classify' (in 

Graph 4) indicates those patterns which fall into either the FG Unclear or No Translation 

categories. 
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Graph 1 - Frequency vs Frieze Groups (Primary) 
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2 See subsection 3.2.3. for an explanation of the asterisk shown for this measure. 

r-.b 
Transl 
Sym 



Chapter4 

90 

80 

70 

60 
50 

40 
30 
20 

1 0 

0 

4 . 5 
4.0 

3 .5 
3.0 
2 . 5 
2 .0 
1 . 5 
1 . 0 

0 . 5 
0 .0 

35 

30 

25 

20 

1 5 

1 0 

5 

0 

Unrestricted Pattern Construction Results 

Graph 2 - No. of Students vs Frieze Groups (Primary} 
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From graph 1, we can see that 13% of the activity (a) patterns made in the Primary school 

survey were unable to be classified as frieze groups. However, only 6% of the patterns 

seemed to lack evidence of translation, indicating that the instructions seem to have been 

followed most (94%) of time; that is, the children usually produced repeating patterns as 

oppose to single figures or random sketches. It is also revealing to note that 1 in 5 of the 

Primary students made patterns with no translation symmetry, and those who did 

produced 4 of them on average (see graphs 2 and 3). This means that most of the 

Standard 3 and 4's found the instructions clear, but the minority who didn't usually 

displayed this fact more than once. 

By far, the most frequently drawn frieze patterns were p 111, pm 11 and pmm2. Of the 

1385 patterns drawn, 70% were one of these three patterns. Correspondingly, each of 

these three patterns was commonly drawn by Primary students. From table A 1.1 it can be 

seen that 86% of the Primary students produced plll, 87% produced pmll and 75% 

produced pmrn2. In fact, on average, students who drew pl 11 tended to produce 4 of 

them; studen ts who produced pml 1, 4; and those who made pmm2 constructed 3.4 on 

average. 

On the other hand, two of the symmetry groups , plal and plml, were constructed quite 

infrequently by the Primary students and, correspondingly, the number of students 

making them was also low. The plal symmetry group was particularly rare; of the 1385 

patterns drawn, only 3 belonged this frieze group. 

Of additional interest, is the frequency of the first three patterns drawn (graph 4) in 

comparison to the frequency column chart (graph 1). The comparison indicates that, on 

the whole, the nature of the patterns drawn didn't change with respec t to one dimensional 

symmetry groups as the Primary classes progressed through the activity sheet. 

Nevertheless, with respect to one aspect of intuition, namely immediacy, the bes t 

indicator may be the frequency distribution of the patterns made first. Therefore, whilst 

the overall profiles of graphs 1 and 4 are very similar, there are slight differences that may 

be worth noting. 

For instance, the proportion of patterns made first that were examples of p 111 is slightly 

smaller than the proportion of the total number of patterns that were p 111. This indicates 

that pl 11 may be slightly less intuitive than the total frequency distribution graph 

indicates. This can be verified by the increasing number of p 111 patterns drawn second 

and third (see graph 4). Using a similar argument, the pm 11 pattern may be slightly more 
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intuitive, pl 12 may be slightly more intuitive, pmm2 may be slightly less intuitive, and 

pma2 may be slightly more intuitive than the total frequency graph (graph 1) indicates. 

4.1.2 Transformation and Symmetry Analysis 

The discussion of the results has so far been concerned with symmetries in tem1s of frieze 

groups. These results can also provide some information about the four rigid 

transformations within the frieze groups. It is perhaps redundant to mention that 

translation is common to each of these commonly produced symmetry groups. 

Furthermore, since the instructions required the participants to make 'repeating patterns', 

the inferences about its intuitive use in the context of patterns that share symmetries is 

questionable. Perhaps the best that can be said is that most of the 99 Standard Three and 

Four children who were surveyed found it relatively easy to use translation to make their 

patterns with little explanation from the researcher. Its placement at the top of the list 

which follows should therefore be considered provisional. 

Besides translation symmetry, the frequently drawn pml 1 and pmm2 groups have 

vertical reflection symmetry in common. It is therefore not surprising to find that the next 

most commonly drawn frieze pattern was pma2, which also has vertical reflection as an 

element of its symmetry group . This common use of vertical reflection symmetry accords 

closely with the perceptual psychology literature, as well as the findings of Fischer 

(1978) and other mathematics educators (see subsections 2.2.1 and 2.3.1) . 

A helpful approach to see which transformations (besides translation) are the most natural 

to use is to look at the frieze groups with translation symmetry and only one other type of 

symmetry . These groups are plml, pml 1, plal and p112. This analysis method 

furnishes some very clear results. The number of plal was very low, and hence the 

number of students who drew them was also small. This frieze pattern is characterized by 

glide reflection. Furthermore, only a third of the Primary students made the p lm 1 pattern 

which has translation and horizontal reflection symmetries only. Twice as many children 

produced friez~ patterns with just half-turn (pl 12) although still not frequently, and 

almost all the students produced patterns with vertical reflection only in them (pm 11 ). 

Thus, a rough ordering of the frequency and commonality of the symmetries present in 

the unrestricted frieze patterns from activity (a) seems to be: 
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1. Translation (common and frequent) 

2. Vertical Reflection 

3. Half-tum 

4. Horizontal Reflection 

5. Glide Reflection (uncommon and infrequent) 

It is quite clear, then, that the seven one-dimensional symmetry groups were not equally 

likely to be drawn and, given their distribution, some symmetries of the whole pattern 

arose more naturally (consciously or not) than others in the production of these patterns. 

In particular, it seems that translation and vertical reflection were the predominant 

transformations present in the patterns drawn. Conversely, glide reflection and horizontal 

reflection were not readily used by themselves in these patterns. 

There is also an obvious correspondence between these observations and the ordering of 

isometry learning (in finite situations) proposed by Piaget and various mathematics 

educators. The list does, however, differ in that a particular rotation, the half-tum, occurs 

above horizontal reflection. We gain, therefore, a possible refinement and hence further 

insight into some of the rigid transformations intuitively present in patterns. This does 

not, however, necessarily imply anything about the actual motivations of the drawers, 

since symmetry may not have been a consideration in any explicit way, as GrUnbaum 

(1984) pointed out. 

The ordering above does beg the question: which symmetries, in patterns with more than 

translation and one other type of symmetry, were used intuitively, and which were merely 

an accidental by-product of the other symmetries? In other words, are any of the 

symmetries present in pmm2 and pma2 incidental? 

This question has proved to be difficult to answer satisfactorily. An initial attempt could 

be made from the frequency of the presence of symmetries in patterns pl 11, pml 1, 

plml, plal, and pl 12, as summarized by the list above. Thus, whilst prnm2 has 

translation, horizontal reflection, vertical reflection, half-turn and trivial glide reflection 

symmeoies, if any have been used deliberately to any degree, the likely intuitive ones are 

translation, vertical reflection and half-turn whose combination which will generate the 

pattern. Similarly, pma2, which includes translations, vertical reflections, half-turns, and 

glide reflections, also seems likely to be the result of intuitive translation, vertical 

reflection and half-tum (using a different combination of the same symmetries). 
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Not surprisingly, this rough explanation lends itself to criticism. For instance, it contains 

the assumption that the symmetries within pmm2 and pma2 were used independently. If 

they were not, there is little validity in using the frequency distribution of the 'less 

symmetric' patterns to make inferences about the manner in which pmm2 and pma2 were 

made. It also does not include important factors such as the construction methods and the 

intentions of the creators themselves. The quantitaive analysis in the next subsection 

makes a first step towards describing the likely use of transformations in the activity (a) 

exercise. 

4.1.3 Construction Analysis 

Using the findings of the interviews (see section 4.4) a further refinement to the frieze 

group sorting of the activity (a) patterns can be made. This new analysis emphasizes the 

two main probable methods of construction by making a distinction between two kinds of 

pattern:disjoint and connected. The categories add another dimension to the way the 

patterns are viewed, and became of importance when considering how the Standard 

Fours probably constructed their frieze patterns. (See subsection 3.2.2 for details of these 

categories) 

The important measures seem to be the relative frequ ency of disjoint and connec ted 

patterns for each symmetry group and, at least as significant, how common each of the 

kinds is for each symmetry group (see appendix Al.4). Graphs 5 and 6 are shown for 

each measure respectively. 
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Graph 6 - No. of Students Producing Pattern Kind (Primary) 
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In addition to the information from graphs 5 and 6, the table in appendix A 1.3 indicates 

that virtually all of the Primary school subjects produced disjoint patterns, while only half 

of them constructed a connected pattern. The 'Unsure' category indicates an ambiguity 

between the disjoint and connected categories; therefore the number of students who 

made disjoint patterns and the number of students who drew connected patterns have 

been underestimated. However, during the classification process, it seemed to the 

researcher that most of the patterns put into the 'unsure' category were in fact disjoint 

ones. 

While most of the patterns drawn were disjoint, it is interesting to see that the pma2 

symmetry group was most frequently and most commonly drawn as connected. This 

result suggests that it was only this frieze group which may have been 'understood' as a 

connected whole by the majority of the standard fours surveyed. This may have been true 

of the plal group as well, but the number of students and the number of.patterns falling 

into this category was too small (3) to make any inferences about disjoint and connected 

ratios. The number of patterns making up the p 1ml category was also relatively low ( 41 ). 

However, almost all (39) of these were disjoint so it seems safe to conclude that the 

disjoint kind was the more intuitive way of constructing a plml pattern. 

The fact that many children did make patterns of both kinds suggests that a different 

intuitive use of transformations may be used by the same child from pattern to pattern. 

For example, the pma2 patterns, which are usually made as connected (and probably 
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continuous as well) seem to have been created with a sense of the 'whole'. The pmm2 

pattern are usually made as disjoint (and hence have a sense of 'repeating parts'). 

This new consideration of the construction method also adds further doubt over 

extrapolating results· for the intuitive use of symmetry from some symmetry groups to 

others. This is why the explanation in subsection 4.1.1, suggesting which symmetries 

had been intuitively used in the constructions of pmm2 and pma2, is presented 

tentatively. 

4.2 Age Group Comparison 

4.2.1 Frieze Group Analysis 

The two age groups considered here are Primary school (Standard Three and Four) 

children, and Secondary school (Form Four) students. These groups correspond to pre­

formal and during-formal transformation geometry learning. Due to a lack of available 

class time, it was not possible to survey any post-formal groups. Furthermore, the 

number of Form Four's that participated in activity (a) was only 22 (one class) whereas 

the number of Primary students involved with this activity was 99. Therefore the results 

presented here are included mainly for interest; graphs 7, 8, 9, and 10 are simply 

suggestive. 
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Graph 8 - % of Students vs Frieze Groups (Age Comparison) 
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The aim of this discussion is twofold: firstly, to highlight the factors which seem to be 

common to both groups; such factors indicate the nature of the patterns which are intuitive 

(that is, independent of a formal transformation geometry framework) . The second 

objective is to examine some of the differences between the groups in order to obtain 

clues about the changes in pattern construction methods which may occur as a person 

moves from age 10 to age 14. In Piagetian terms, this transition corresponds roughly to 

the development from 'concrete operational' to 'formal operational' stages. Any 

contrasting properties of the patterns made by each of the groups may be helpful to 

teachers, since it provides information which is specific to those levels. 

In graph 7, we can observe that the three most frequently drawn frieze groups were p 111, 

pml 1 and pmm2 for both groups. Also, the plal and plml patterns were drawn in low 

frequency by both age groups. In fact, as observed in the previous section, a rough 

'intuitive ordering' can be constructed from the three measures of frequency, 

commonality, and average number of patterns drawn by the Primary and Secondary 

students surveyed: 

1. pl 11, pml 1 ~ pmm2 (common and frequent) 

2. pma2 ~ pl 12 

3. plml 

4. plal (uncommon and infrequent) 

Whilst the symmetry groups in one line of the list may be roughly equally intuitive, slight 

differences that occurred in all three measures for both age groups suggest the ordering 

indicated by the symbol ·~·. For instance, both p 112 and pma2 have been ranked 2nd on 

the intuitive ordering list. However, on all three graphs for both age groups, the columns 

for pma2 are marginally, yet consistently, higher than the columns for pl 12. A comma(,) 

between two frieze groups signifies that the differences are not consistent between the 

measures or the age groups. For example, pl 11 is higher than pml 1 on two measures, 

and is lower on the other two measures. 

The most obvious difference between the age groups was the proportion of the patterns 

that were p 111 's. Graph 7 indicates that 27% of the Primary patterns were p 111 whereas 

only 20% of th6 Secondary patterns were p 111. This 'drop' in the proportion of 

translation-only patterns yielded small increases in the percentage of pl 12, pmm2 and 

pma2 symmetry groups produced. This shift indicates that other non-translation 

transformations were being used more often by the during-formal transformation 

geometry learning group than by the pre-formal students. 
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The difference in the numeracy of p 111 was not paralleled in the proportion of students 

making this pattern; the percentage of Fourth Form students who made this frieze group 

was a little greater than the percentage of Primary pupils who made it. Indeed, this was 

the case for the five _most common frieze groups. The number of patterns, and the number 

of students prcx:lucing them, was very low for the other two symmetry groups. 

The distribution of the first patterns made by each age group is shown by graph 10. Two 

observations seem to be clear: 

1. The 'skyline' profiles of graph 7 and graph 10 for the Fourth Form were different. 

2. The 'skyline' profile of graph 10 differed for each age group. 

These observations suggest the following conclusions. Firstly, the distribution of frieze 

groups and hence the symmetries used by the Fourth Formers changed as they 

progressed through activity (a). Particularly noticeable was the high occurrence of pma2's 

made first relative to the proportion of all pma2's of the total number of patterns 

produced. This was a pattern which commonly 'leapt to mind' first but subsequently 

became less frequently drawn as the class continued filling in the empty strips on activity 

sheet (a). This suggests that the pma2 pattern may have been more intuitive to the Fourth 

Form class than the other three measures indicate. Conversely, the frieze groups pml 1 

and pmm2 occurred far less frequently at the beginning of the exercise than later, which 

indicates that the pml 1 and pmm2 symmetry groups may not be as intuitive as the other 

three measures suggested. 

Secondly, the patterns that initially 'leapt to mind' to the Primary students were of a 

different character to the patterns that the Fourth Form subjects drew first. Whilst both 

groups drew a large proportion of p 111, they differed a great deal with respect to the 

pml 1, pll2, pmm2 and pma2. For instance, the proportion of Primary students who 

made a pml 1 first, or who made pmm2 first, was twice as great as the corresponding 

proportion of Fourth Form students. 

4.2.2 Transformation and Symmetry Analysis 
;,, 

The rough frieze group 'ordering' can in tum give clues to the relative frequency of some 

of the symmetries intuitively used by both groups. It should be remembered that this 

ordering does ignore the results of graph 10 which focuses on the first patterns drawn 

only. Using a similar argument to that in subsection 4.1.2, we can infer the relative 

'intuitive-ness' of the transformations (which is the same for both age groups): 
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1. Translation (common and frequent) 

2. Vertical reflection 

3. Half-tum 

4. Horizontal reflection 

5. Glide reflection (uncommon and infrequent) 

The analysis of this list is the same as the previous section. If (a) the symmetries are used 

without affecting each other (i.e., independently) and (b) there is no difference in the use 

of symmetry depending on construction methods (e.g., disjoint and connected patterns), 

then we might infer that the symmetry groups prnm2 and pma2 are both constructed using 

translation, vertical reflection and half-turn in an intuitive fashion. The glide reflection that 

exists in the pma2, and the horizontal reflection that exists for the pmm2 are probably 

incidental or even accidents . However, the two assumptions necessary to make this 

conclusion are open to question and thus the inference is probably not valid. This leaves 

the question of which symmetries present in pmm2 and pma2 were accidental still 

unanswered. 

4.2.3 Construction Analysis 

We can almost certainly deny the second of the two premises above by considering the 

distribution of pattern kind (i.e., disjoint and connected patterns) for all the frieze groups, 

particularly pma2 and pmm2. It is quite clear, from tables A 1.4 and A2.4 that the 

distribution was not the same for each symmetry group. For example, the patterns in the 

pma2 category occurred far more frequently as connected than disjoint. In contrast, the 

p 111 's were almost always disjoint. Since the construction method and the associated 

conception of a pattern were probably different for each of these kind, the way 

symmetries were used was probably different for some frieze groups. 

If we consider the proportion of patterns that were either disjoint or connected, there 

seems to be a clear difference between the two age groups. About 75% of all the Primary 

patterns are disjoint; whereas only 49% of the Secondary patterns are. Virtually all of the 

Primary and Secondary students produced a disjoint pattern, yet only 55% of the Primary 

students, compared with 100% of the Secondary pupils, made a connected pattern. 

Now it doesn't necessarily follow that the construction of a connected P,attern implies a 

sense of the whole on the part of the creator, whereas the sense was usually one of 

'repeating parts' for the disjoint patterns (see subsection 4.4.1). Furthermore, even the 

Primary children who did make connected pattern made far fewer of them than disjoint 
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patterns. This means that, at most, only half the Primary students use both construction 

methods associated with each kind (disjoint and connected) of pattern. 

·Graph 11 (i) - Kind of Patterns Produced (Primary) 

Unsure 

Graph 11 (ii) - Kind of Pattern Produced (Form 4 Class) 

Unsure 

Disjoint 

Connected 

4.3 Further Observations 
;, 

This section describes five aspects of activity sheet (a) not already covered by the 

quantitative analysis in the previous subsections. These include the 'No Translation', 'FG 

Unclear' and 'Unsure' categories, symmetries present in the patterns not indicated by the 

symmetry group classification as well as seemingly accidental symmetries. Whilst 

classification as a frieze group was occasionally not possible, many of the drawings in the 
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'Can't Classify' category showed evidence of transformations. The examples of design 

anomalies are extracted only from the Primary school subjects. The discussion concludes 

by considering the results of 10 'vertical' patterns drawn by the interviewees. 

4.3.1. No Translation Symmetry 

By definition, a pattern fell into this category if it didn't portray sufficient evidence of 

translation symmetry. There were three main causes for this phenomena. 

In the first case, only a single figure was drawn. This did not occur very often. In this 

case, the instructions don't appear to have been followed, although the intention of a 

drawer can not be stated with any degree of certainty unless questioned directly. The 

underlying symmetry group of the single figures was not usually C1, but some other 

group such as a strip-filling C2. Despite the lack of translation symmetry, the design 

usually had some other symmetry present in it. 

In the second case, a sequence of figures was drawn with little or no evidence of 

repetition. In this case, the word 'repeating' was interpreted in some other way besides 

translation. The figures were most often examples of the groups 01, D2, 03, D4, D5, 06; 

Doo and occasionally C2, or C4. Instances of these included isosceles triangles (with 

vertical symmetry), people's faces, green peace signs, cars, trucks, houses, trees, 

equilateral triangles, rectangles, squares, stars, asterisks, circles and 2- or 4- armed 

swastikas. Some C1 figures often showed approximate vertical reflection symmetry. 

Other C1 figures, such as spirals, 'suggested' rotation. 

F(gure 4.1 

Many students may consider the filled in strip, without any extension, to be 'the pattern'. 

For example, 

Figure 4.2 
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In the third case, not enough of the design was drawn in the strip for the classifier to be 

confident that translation symmetry existed. (Two translation units were required for a 

pattern to avoid this category). This is not to say that translation symmetry wasn't 

intended, but that this intention wasn't sufficiently clear to the classifier from the 

drawing. It is conceivable that such a pattern may have been intended to be a symmetry 

group. Therefore it could be classified as 'FG Unclear', since the symmetry group was 

often ambiguous, but this isn't done because priority in classification is given to 

translation symmetry (see subsection 3.2.2). Of course, the very fact that a pattern 

suggested one or more symmetry groups implies that it contained some symmetry. 

In short, a good deal of intuitive transformation geometry was often present in designs 

with no apparent translation symmetry. Very few patterns which fell into this category 

contained no symmetry. Even the exceptions often had some non-rigid transformations in 

them, such as shear or enlargement/dilation. For example, 

Figure 4.3.1 

- \-\-\-\-\-\-\-\\-\-\-
t \ • 

Figure 4.3.2 

In the first case (fig. 4.3.1), the dilation transformation seems to have been deliberate. 

The second example (fig. 4.3.2) is more difficult to assess. The shear, or progressive 

slant, may have been an accidental result of the creator keeping his elbow in one fixed 

place on the table as he drew each stro~e from left to right. 

Other 'topological' transformations occasionally occurred. 

Figure 4.4 
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It is not clear what intentions the creator had in her design (fig. 4.4). 

4.3.2. Frieze Group Unclear - Patterns With Ambiguous Symmetry 

Groups 

In Chapter 3, a strip pattern with translation symmetry was defined as 'FG Unclear' if it 

had some ambiguity in the pattern which meant it could be conceived of as more than one 

symmetry group. The reasons why patterns were classified in this way were numerous. 

The following examples are an attempt to sketch some of the ways frieze group ambiguity 

could be introduced into a pattern. 

-/-(-( ~1-1-1--1-/~/-/-) 
• 

Figure 4.5 

The slant was ambiguous in this case. Were the 'vertical' line segments actually intended 

to be sloped? "No" implies pmm2; "Yes" implies pl 12. 

Q A 
Figure 4.6.1 

o0 o0 oc;U 0 00 
Fi~urc 4.6.2 

() () 
(j () 

· .... , 

The spacing was ambiguous in both patterns (figs. 4.6.1 and 4.6.2). In the first case, is 

the underlying symmetry group pll 1 or pmll? In the second case, is it an example of a 

pma2 or a pl 12? 

The following patterns (figs. 4.7.1 and 4.7 .2) display an ambiguity of position. The 

creator of the first pattern was not clear about her intentions as to the position of the 
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objects with respect to the border lines. Should the pattern be classified as a pmm2 or a 

pmll? 

[. j 

Figure 4.7.1 

Figure 4. 7 .2 

Is the second pattern (fig. 4.7.2) a plll or a pmll? The ambiguity results because the 

relative position of the big and small hearts is not clear. Frieze group ambiguity could also 

result from a creator using 'topological' shapes, figures or curves. Four examples follow: 

Oc1 ·QcJ[jcJ[J<J0 
Figure 4.8.1 (Clouds) 

• ~~ -~_, .. , 11 -~~ -~~~ 

Figure 4.8.2 (Scribble) 

Figure 4.8.3 (Squiggles) 

.; :·" .. / I .--..;.a. .. 
·:-..;:.;;,. 
-·-~ -··-·· :; . 
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Figure 4.8.4 (Othe r) 

()?/JC . ... -. 1; ·' .il·· 
)
. , / .. 

l / I 
. I...__! -- ·-' .. . 

I . . . . 

~j/'//lC. .. 
Figure 4.9 

The pattern above (fig. 4.9) has an ambiguous frieze group because of the colouring. 

Finally, the last type of frieze group ambiguity arose from the 'perspective' drawing of 

3D objects, or overlapping, as the following examples illusu-ate. 

tJ b. d . 
Fig ure 4.10.1 (So lids) 

\ \/ '',\// \ " / \ , / \l i / , >:· 
/,1~ 

I , I • \ . (" 
/;\ I •, \. I : ' / \_'- /' I ' ' . 

l•' i g u re 4.10.2 (Overlap) 

The possible 'overlap' (fig. 4.10.2) suggests a weaving pattern. The symmetry could be 

pl 11, pl 12, or even p111m2. 

To conclude, many patterns that were classified as 'FG Unclear' appeared to display 

evidence of transformation geometry in them, including translation symmetry. 

Unfortunately, it wasn't always clear w!tic!t non-translation transfo1mations were present 

or intended. 
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4.3.3. Symmetries Not Indicated By Frieze Group Classification 

One of the shortcomings of the frieze group classification is that symmetries of figures 

within a particular patt~rn, and the transformations that exist between figures, can easily 

be 'ignored' by the symmetry group assigned to that pattern. In order to overcome this 

inadequacy, we can either refine the classification, or invent a new one. In the fom1er 

case, ambiguities can easily arise; a practical problem which can make interpretation 

difficult. On the other hand, inventing a new system may reflect the .'internal symmetries' 

well but miss the overview of the symmetries of the whole pattern that the frieze group 

analysis provides; devising such a system is a theoretical problem yet to be explored 

according to Gri.inbaum et al. (1986). 

The fourth section of chapter two discusses some of the possibilities of classification at 

length, and most of these are used in various parts of this chapter. It is beyond the limits 

of this thesis' time constraints to give more than a brief, descriptive analysis of the 

disjoint activity (a) patterns using the 'alternative' incidence classification. Instead, we 

will examine some examples of the seven frieze groups that have more transformation 

geometry in them than revealed by the crystallographic group, and try to make some 

reasonable conclusions about the nature of the use of intuitive transformation geometry. 

It would be easy to conclude that a person having most of her, or his, 16 patterns 

classified as p 111 did not have a strong intuitive sense of transformations besides 

translation. After observing many p 111 patterns drawn by Primary school children, that 

conclusion now seems false. Consider the following patterns. 

(<!) 
c) ~ 

F 

Figure 4.11.1 

Figure 4.11.2 

1 
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The first example (fig. 4.11.1) contains figures that suggest, or approximate, the C2 

symmetry group. Because of the slight asymmetry (i.e., the head of the 'snake') , the 

frieze group classification is p 111. In the second case ( 4.11.2), the C2 figures are clear, 

but the positioning of both base pattern elements on the bottom line instead of 'in the 

middle' resulted in the whole pattern (including the border lines) having only translation 

symmetry. 

The occurrence of approximate vertical reflection was also quite high. Many D1(v) figures 

appeared to have been altered or ornamented deliberately. In one interview, a child said 

that she did this to make them "more interesting". Let's consider the following pattern 

(fig. 4.12) and extract from an interview: 

Figure 4.12 

I: Pattern number 4 ... Are these daggers or knives or something? 

I: Yeah! 

I: When you did the curls on them, what did you do ... what were you thinking of 

when you did them? 

M: !dunno. 

I: 'Cause you've got one going like that ... and one going like that. 

M:Mmm ... 

I: But you didn't draw this, you didn't go [draws a dagger with both curls down: 

a D 1 figure] ... you didn't go like this. 

M: I dunno ... I went ... instead of going two down, I put one down and one up. 

I: Okay, did it give it a different look when you do it like that ... in any way? 
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M: Mmmm ... I think so. I dunno ... 'cause when I do them I do them at home ... 

I start drawing like that [points to interviewer's sketch] ... but then I had an idea 

to do them like that ... and they look better ... more interesting. 

Mark was aware that he had changed the look of the dagger, although he mentioned 

nothing that explicitly identified the vertical reflection symmetry of the dagger. The 

asymmetry therefore appears to be implicit, since it is probably intentional. 

The use of deliberate asymmetry is not peculiar to the Primary children's patterns. 

Indeed, many western art works display this phenomenon according to Weyl (1952, pl3) 

He went on to say: 

"But seldom is asymmetry merely the absence of symmetry. Even in asymmetrical designs one 

feels symmetry as the norm from which one deviates under the influence of forces of non-formal 

character." 

The presence of intentional asymmetries certainly suggests that, in some way, the 

symmetry that has been removed is intuitively perceived by the creator of the pattern. In 

some circumstances it seems natural that such asymmetry is pursued. In their article on, 

symmetry-making and -breaking in visual art, Molnar and Molnar ( 1986) state: 

the experts are in agreement with the majority of people in stating that the strictly 

symmetrical figures are less satisfying aesthetically. In another con text (for example in 

ornamental art), symmetry would be, on the contrary.judged as attractive." 

Other patterns also contained highly symmetrical figures or a considerable degree of 

incidence. This clear presence of intuitive transformation geometry was not recognised by 

the general frieze group classification. For the sake of brevity, only one example of each 

symmetry group will be shown to illustrate this point. 

Figure 4.13 

In the plml case (fig. 4.13), a base pattern comprising a D4(v) figure and a D1(h) figure 

yielded a pattern with translation and horizontal symmetry only. 
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Figure 4.14 

The above pm 11 pattern (fig. 4.14) contains a D1 motif and quarter-turn incidence 

between each motif. Between consecutive D1(v) figures, there is half-turn symmetry. Yet 

the overall symmetry group classification of the pattern only includes translation and 

vertical reflection symmetries. Not only did the drawer of this pattern have a non­

symmetry group motivation, but he also used a higher degree of transforrnation geometry 

than the common mathematical classification of such a pattern would suggest. 

No example was found for pl al. 

Figure 4.15 

The base pattern of the pl 12 design illustrated above (fig. 4.15) contains one D4 figure, 

and a set of disjoint straight lines arranged in such a way as to have half-tum symmetry. 

The repetition of the base pattern results in the 'whole' pattern having the lesser 'amount' 

of symmetry than the components, that is, half-turn symmetry. 

Figure 4.16 

The 'Star of David' figures are examples of the D6 symmetry group. However, the frieze 

group classification, prnm2, only recognises the resulting half-turn, vertical and 

horizontal reflection symmetries of the whole pattern. 
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/r--I+ y 
Figure 4.17 

Finally, the pma2 pattern (fig. 4.17) contains elements such as D1(v) and D2(v) figures . 

In fact, the asterisks could be interpreted as D4(v) figures; the whole pattern certainly 

does not have 'diagonal' reflection. 

This discussion has attempted to reinforce a salient point. In some patterns, the symmetry 

of the figures drawn, and the high order incidence relationships between them, suggests 

that an intuitive use of trnnsfonnations may have been employed by some students, a use 

which is far beyond any formal geometry instruction given to children at this stage of 

their education. 

4.3.4. Accidental Symmetries 

Full sections of inte1view material in this chapter and the next are presented to indicate the 

construction methods associated with a pattern's frieze group, kind, style and type. 

However, in this present discussion, a few interview extracts that illustrate accidental 

symmeu·ies a.re included to reinforce the idea that not all symmeu-ics found in patterns are 

intuitive to the creator. This is supplemented by a more theoretical discussion of other 

potential symmetry accidents. 

-Q__ ___e_. 

Fi~11rc 4.18 (Mary) 

I: Okay, what about this one, what were you thinking of there? 

M: Ummm ... it's sort of like an 'c'. 

I: Sort of like an 'e' ... anyLhing else? ... can you sort of describe Lhat pallern Lo 

me? 
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M: Um ... it's a line with a loop in the middle ... 

I: Uh-huh ... tell me about the loop ... is the loop meant to be straight up and 

down or is it meant to be sort of on a slant? 

M: It's sort of like on a slant. 

I: Are you sure? 

M: Uh-huh. 

Any possibility of intuitive vertical reflection can be excluded in the construction of this 

pattern (fig. 4.18). 

I
I c 1' 
; ,: 
, . ' ' 

Figure 4.19 (Alice) 

I: Sec this one here ... did you deliberately shadow it in this direction, or did you 

just mean for it to be shaded? 

A: Just shaded. 

I: And is that line meant to be right in the middle, or is it meant to be more ... 

higher than the middle? 

A: Umm? ... 

I: Do you see what I mean? ls that line actually meant to be there? (points halfway 

between border lines) 

A:No. 

I : It's not. It's meant to be higher? 

A: Yep! 
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The shading was non-directional (fig. 4.19), implying that the overall symmetry group 

has been correctly identified as pml l, since the side length of the smaller square is more 

than half of that of the larger square. However this frieze group identification seems 

meaningless in this instance since the vertical symmetry of the whole is probably an 

accidental result of the-symmetries of the two squares in the base pattern, and the spacing 

of the base patterns (see Alice's construction methods in interview section 4.4). Any 

symmetry that may be intuitive in this pattern is most likely to be implicit in the drawing 

of each of the base pattern components, namely, the squares. However, it seems 

reasonable to conjecture that the rotation symmetries, which are the composition of the 

reflection symmetries, could easily be incidental. 

"I_ - _}_ 
I '- y" - j, X J-,, - I 

Figure 4.20 (Kate) 

I: See this pattern here ... what were you thinking of there? What did you do? 

K: Well I couldn't think ... I just thought of that one because it was things to do 

with [maths] ... it was something different that I thought of ... I used that as well 

... but I decided to do all the maths signs in them. 

I: Uh-huh. 

K: Which made quite an interesting pattern. 

Kate also said she "noticed them on the blackboard .... so I decided to make a pattern out 

of them ... times, minus, plus, minus, ... like that (points at each figure, left-to-right)." 

This seems to be a base pattern construction, especially given the spacing of the design 

(fig. 4.20), and the use of everyday mathematics symbols (mono-oriented objects). This 

suggest that the intuitive transformation geometry present is implicit in each figure, but 

accidental in terms of the pattern as a whole. 

Figure 4.21 (Amy) 
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I: Number 12 [fig. 4.21]. What was the order you did things in there? 

A: I did the triangle [mountain] ... and then I did those little bits there ... they look 

like snow ... and then ... I think I put the sun on it. 

I: Okay ... so you didn't do all the mountains first and then go back and do the 

suns? 

A: No. I don't think so. 

This pattern looks like a pml 1, but according to Amy (later), the sun and mountain were 

intended to be grouped together, not evenly spaced. She constructed the pattern strictly 

from left to right which, given that the pattern is disjoint, strongly intimates a base pattern 

construction. Again, the intuitive transformations present are likely to be implicit in the 

mountain (vertical reflection) and possibly the sun as well. Translation has been used 

explicitly as a repeating operation. 

Figure 4.22 (Richard) 

Each figure in this pattern (fig. 4.22) appeared to have half-tum symmetry, but in fact, 

this was not the case: 

I: It that curl supposed to look like that curl in some way? 

R: Nup. It's supposed to look like an 'e' but it just flicks ... It's not really 

supposed to be the same ... that one's kind of a 'e' and that one's just half. 

The only transformation intended in the pattern above (fig. 4.22), therefore, was 

translation. 

Perhaps another potential occurrence of unintentional symmetries are those resulting from 

the composition of other symmetries present in a pattern. To illustrate a simple example, 

consider the following design: 
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Figure 4.23 

Besides the identity transformation, the underlying symmetry group has three elements: 

half-turn, vertical reflection and horizontal reflection symmetries. Imagine a person 

making such a pattern; she or he might intentionally make the 'top and bottom', and 'left 

and right' look the 'same' (i.e., the horizontal and vertical reflection symmetries are to 

some degree intentional, although not particularly well-defined). The combination of the 

two reflection symmetries gives the pattern an extra symmetry (a half-turn). If the half­

turn is not intended and not perceived, we want to be able to say that the presence or 

horizontal and vertical symmetries is intuitive, whereas the half-tum symmetry is an 

accidental spin-off of the construction; that is, an incidental symmetry. 

As discussed in chapter 1, the word intuitive can have slightly different meanings 

depending on the context in which it is used. In this discussion, it is defined as the non­

accidental use of transformation geometry independent of any formal learning of the 

subject. The degree of intention behind the use of transformations could be considered to 

vary on a continuum from explicit (conscious, though not formal) to implicit 

(subconscious) to accidental (an incidental occurrence of symmetry). For the sake of 

ease, only these three classes are considered. 

In the case of the seven frieze patterns, the same principle will easily apply. To do this 

methodically, it is helpful to think of each group in terms of its minimal generating set(s). 

The minimal generating sets represent different ways of generating .the r,attems, without 

necessarily using all the transformation types present in the pattern as a finished product. 

The anomaly, p 111, has only one type of symmetry-of-the-whole, so it is impossible for 

any composition of that symmetry to yield another accidental symmetry. In this sense it is 

unique. 

The other frieze groups can be produced without using all their generators. If we can 

identify those symmetries a person has intended, these sets allow us to systematically 

raise questions about incidental symmetries (extra symmetries which were present but not 

necessarily used to generate the group). Theoretically, even the translation symmetry in 

p lal could be an accidental by-product of the repeated use of the glide reflection 
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transformation. For a symmetry group such as pmm2, a whole myriad of different uses 

of transformations will generate it. So, mathematically, there is more than one way of 

using transformations to generate six of the seven frieze patterns. , With all these 

possibilities, it would be rather surprising if a drawer did intend all the symmetries 

present in a frieze pattern such as pma2 or pmm2. 

Table 4.1 

Frieze Types of Minimal Generating Sets 

Group Symmetries Present 

pl 11 {t} { t} 

plml {t, h, gr} { t, h}, { t, gt}' { h, gt} 

pmll { t, V} { t, V}, { V 1, V2} 

plal { t, g} {g} 

p112 { t, 1h} {t, lf2}, { ½l, ½2} 

pmm2 {t, v, h, gt, 1h} {t, V, h}, {t, V, 1/2}, {t, V, gr}, {t, h, lf2}, 

{t, ½, gd, {v, h, ½L {v, h, gr}, {v, 112, gt}, 

{h, ½, gr}, {v1, v2, h}, {v1, v2, 1h},{v1 , v2, gt}, 

Ph1, ½ 2, v}, Ph1, 1h2, h}, Ph1, 1122, gtl 

pma2 {t, v, g, 112} {v, 1h}, {v, g}, {g, 1h} 

t = translation symmetry, h = horizontal reflection symmetry, v = vertical reflection 

symmetry, ½ = half-tum symmetry, g = (non-trivial) glide reflection symmetry, gt= 

trivial glide reflection symmetry. Numerical subscripts denote independent symmetries of 

the same type. A similar table featured in Schattschneider's (1986) article, although she 

appeared to omit 6 of the possible minimal generating sets for the symmetry group 

pmm2. 

An implication of this table is that it is not always possible to confidently state, even 

theoretically, which symmetries were intended or used in a design, and which were not. 

Of course, in particular cases, when the number of different symmetries is two or less, 

that is, translation and possibly one other sort kind of symmetry,. we ~an make some 

conclusions, at least tentatively. 

plll, for instance, requires some use of translation. The frieze group plml almost 

certainly requires the use of translation and horizontal reflection; in the two cases where 

one of these transformations isn't a generator, it seems very likely that some use of 

horizontal reflection and translation is used in the trivial glide which can be thought of 
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(and often is by geometry students) as the composition of translation and horizontal 

reflection. pml 1 requires the use of vertical reflection (but not necessarily translation 

since it may be combined with another vertical reflection). plal requires the use of glide 

reflection, and pl 12 requires the use of half turn. The ordering of symmetries from the 

results of these five patterns which appears in subsections 4.1 .2 and 4.2.2 seems 

justified. From table 4.1 above, however, it is clear that the other two symmetry groups, 

pmm2 and pma2, introduce ambiguity. 

We can obtain more information by refining the classification sy$tem, so as to reflect 

something of the drawers' methods. For instance, categorising patterns into kinds, styles 

or types. However, the best approach is probably not theoretical. Watching the drawers 

construct their patterns, and discussing the motivations, intentions and understandings the 

creators have of their own patterns seems to be a more revealing investigation method. 

4.3.5. Unsure - Patterns With Ambiguous Kind 

The most common practical problem that introduced ambiguity between disjoint and 

connected patterns was confusion between tilings and a set of disjoint figures or line 

segments that touched the strip borders. This was a direct result of the border lines of the 

strip being already provided for the drawer (sec appendix El). Typical examples of the ._ 

disjoint/connected ambiguity follow for each of the 7 frieze groups and for the 'FG 

Unclear' and 'No Translation' categories. 

( ,' 
\ 
J ; j 

t.: •. , L 
i ·. 

Figure 4.24.1 (p 111) 

Figure 4.24.2 (p 11111) 

Figure 4.24.3 (p 11111) 
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No example was found for the plal symmetry group. 
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Figure 4.24.4 (pl12) 

Figure 4.24.5 (pmm2) 

Figure 4.24.6 (pma2) 

Figure 4.24.7 (FG Unclear) 

Figure 4.24.8 (No Translation) 

Besides outlining the kind-ambiguity present in the patterns, some further points can be 

made. The results of the pattern kind analysis (disjoint and connected) for the Primary 

children were clear for all of the frieze groups except for plal. The ~isjoint patterns were 
. ' . 

by far the most frequent and common kind produced by this pre-fonnal-transfonnation-

geometry framework group. The construction of such designs suggests that a 'repeating 

parts' conception was the predominant one for this age group. 
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However, the results for the older age group seemed to split the connected and disjoint 

categories fairly evenly. This shift in construction method is then due to (a) the students 

having had some exposure to the formal transformation framework, and/or (b) some 

cognitive development having taken place; for example, most of the Primary students are 

at the concrete operations stage, whereas the majority of Secondary students are at the 

formal operations stage. See Wadsworth (1979) for a synopsis of Piaget's theory of 

cognitive development. 

While the disjoint patterns suggest 'repeating parts', the construction of a connected 

pattern doesn't al ways imply a 'connected whole' conception by the drawer. The reason 

for this can be seen by considering a further refinement of the two categories, as defined 

in section 3.4. 

Table 4.2 

Dis'oint Connected 

Discrete Touchings 

Non-Discrete Tilings 

00000000 
> QQO QQO QQ £)f:E[)+([>l<1>1<C 

Continuous 

Only the patterns in the filamentary connected category strongly suggested a 'whole' 

construction. The touchings, for example, actually suggest a 'repeating parts' 

construction in many instances, whilst the tilings may be made by either construction 

method (depending on the drawer). 
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The pie diagrams in section 4.1, therefore, underestimate the proportion of patterns 

drawn as 'repeating parts'. Unfortunately, it is difficult, if not impossible, to present 

results of a further breakdown of the disjoint/categories since the practical problem of 

distinguishing these refinements as listed above is too great for activity sheet (a)'s frieze 

groups (as mentioned in subsection 3.2.2). To illustrate this difficulty, consider the 

following commonly drawn pattern: 

Figure 4.25 

Was this intended to be a touching (fig 4.26.1), a tiling (fig. 4.26.2) or a filamentary 

pattern (fig. 4.26.3)? 

Figure 4.26.1 

Figure 4.26.2 

Figure 4.26.3 

The number of these ambiguous cases was too great to be able to draw any conclusions 

about the use of each style. As a consequence, it was necessary to watch, and indeed 

question, the creators of these patterns to discern the actual construction methods and 

intentions behind many patterns. Again, this supports the belief that it is often not 

sufficient to use mathematical structures to examine the final written results of a child's 



L, fUifJLt:T '+ u nresmctea r attern construe non f<esults 113 

work to be able to describe the internal processes used to obtain such results . This 

conclusion is one which is a theme of much mathematics education literature in general. 

For example, Moyer and Johnson (1978) wrote: 

' . 
" ... young children and older students alike have their own way of structuring mathematical 

concepts, which does not -necessarily confonn to the way the finished mathematical product is 

structured." (p 285) 

Similarly, Hans Freudenthal (1983) introduced his book by noting that: 

"No mathematical idea has ever been published in the way it was discovered .... Rather than 

behaving antididactically, one should recognise that the young learner is entitled to recapitulate in 

a fashion the learning process of [human]kind." (p ix) 

4.3.6. Vertical Patterns 

Table 4.3 

Frieze Group plll plml pmll plal p112 pmm2 pma2 

No. of Students 2 
I 

1 2 0 1 3 1 

Producing 

There was no difference suggested between the distribution of the frieze groups in activity 

(a) and the corresponding distribution of vertical patterns drawn by the 10 interviewees. 

However, the D1 figures used to produce the two pml 1 patterns were the same ones used 

by the interviewees to produce the rare horizontal plml, aligned differently with respect 

to the strip but the same with respect to the drawer. This suggests that the pmll, when 

drawn vertically, may not be as intuitive as it may seem here. Conversely, the frieze 

group plml may be more intuitive when drawn vertically. 

Since the symmetry of the figures used in the horizontal or vertical patterns often 

determined the overall symmetry group, the above frieze group conjecture would be 

consistent with the opinion of Howard (1982): 

' 
"It is difficult to find an object in an ordinary room that does not have at least one plane of 

symmetry and, apart from pieces of modem sculpture, I have never seen a symmetrical mono­

oriented object which does not have one of its planes of symmetry vertical when it is in its 

upright position." (p 522) 
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4.4 Interviews - Case Studies 

The analysis in subsections 4.1.1 and 4.1.2 is limited in what it can reveal about the 

intuitive use of transformation geometry. Without doubt, the inquiry into the way the · 

Primary students were thinking about their patterns has proved to be the most important 

aspect of this investigation. The children's own explanations of the processes they used 

to make their designs presented a more lucid, albeit less well-defined, description than the 

mathematical classifications of their patterns. 

The following modes of pattern construction, therefore, not only represent a sumrriary of 

the information discerned from observations of the designs but, more importantly, are 

based on the interviews conducted with ten Primary children. Where applicable, 

mathematical terminology used is from section 2.4. and subsection 2.3.1. While these 

methods have been related in a seemingly logical way below, several patterns discussed 

in the interview seem to have combined some of these methods in a somewhat ad hoc 

manner. The families of pattern processes listed, therefore, represent the best attempt by 

the researcher so far to describe the construction paths taken by the Primary school 

pupils. Indeed, in all the attempts this thesis has made to classify pattern construction , 

several examples of designs have existed that fell into more than one category. It seems 

inevitable that some ambiguity must be present when discussing types of pattern 

construction, since the motivation of the drawers is often multi-faceted or unclear. 

Not all the methods listed here were used by each of the subjects. The list is designed to 

give an overview of most of the construction methods employed by the Primary school 

children, and what intuitive transformation geometry is implied by each construction 

method. Each construction method has at least one interview example to illustrate it. 

Naturally, the examples cannot cover the entire range of resulting patterns that emerge 

from each of the processes. It suffices to state that most methods generated more than one 

kind, style and type of pattern, which indicates that the quantitative analysis above is 

suggestive, but not conclusive. 

4.4.1. Pattern 'Parts' Construction 

A 'parts' construction is one in which a pattern is constructed (in a left to right fashion), 

and some transformation relationship between adjacent elements is engaged. The first 

kind, with simple 'translation incidence', involves the construction of a base pattern 

which is then repeated along the strip. This is labelled a base pattern construction. It 

appears to have been the most common of all the construction methods. While each base 
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pattern may have any number -if elements in it, the Primary children usually included one 

or two ( alternation type 1 ). 

The second type of 'parts' construction, termed an incidence construction, involves other 

transformations, or mor(? than one type of translation; the relationship between adjacent 

motifs often shows reflection or rotation incidence. This was not as common and often 

the presence of undifferentiated transformations seemed likely in patterns with 'inversion' 

(See subsection 2.3.1). 

The third type of 'parts' construction has little implication to transformation geometry 

between figures. It is called alternation type 2 and merely alternates between two non­

congruent elements in a strictly left-to-right fashion. Examples of these three 'parts' 

construction methods are illustrated with interview extracts. 

Base Patterns 

0 

QC) Cs'() ,".",) 

[)CJ 
Figure 4.27 (Amy) 

I: The space between that one and that one ... is that meant to be the same as the 

space between that one and that one, ... or are you grouping these two together? 

A: Yeah. They're meant to be all one pattern (points to the 'vase' and the 'cloud' 

beside it). 

I: When you drew that, what order did you do it in? What did you do first, second 

and so on? 

A: Well, I drew those ['vases'] ... whatever they are ... first ... then I drew the 

little clouds ... then I drew the big ones. 

I: What did you do next? 

A: Um ... went on to the next one [points at second base pattern]. 
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Any intuitive transformation geometry was thus explicitly present in the translation of the 

base pattern, and implicitly used in the base pattern figures (fig. 4.27). The 'vase' had 

vertical reflection symmetry, but it is difficult to say if any implicit symmetry was used in 

the drawing of the clouds due to their topological character. 

The fact that the following pattern (fig. 4.28) was made using the base pattern process 

demonstrates that the mere observation of a pattern doesn't always reveal its construction 

method. The need for interviews to discern the pattern construction method was thus 

apparent. 

Figure 4.28 (Toni) 

I: Tell me ... how did you draw that ... what did you start with, what did you do 

next and so on fl 

T: I just did ... cross ... and then went down from the top part and up from the 

bottom part ... and down from the top and up from the bottom. 

I: So you did a whole lot of crosses? 

T: Yeah ... just joining. 

I: So you didn't do one 'zigzag' and then go back and do another 'zigzag'? 

T: No. 

This pattern would have been classified as connected in the survey. But from Toni's 

explanation, it hasn't been made with a sense of the whole, but of repeating parts, where 

each part has a relationship to the former. Toni also thought of her pattern as crosses 

joined together. The latter description represented a base pattern construction. The earlier 

discussion also suggested an incidence method. 

The intuitive transformation geometry was therefore in the explicit translation of the base 

pattern (cross), and the implicit symmetry of the base pattern figure (cross). An ambiguity 
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was raised here: if each line segment was drawn in relation to Lhe previous adjacent one, 

some reflection or rotation incidence may have been explicitly used. 

I11cide11ce Co11struction 

This construction melhod was not nearly as common, and was most often found in pma2 

(PSll) designs with "up down up down ... " explanations. The presence of 

undifferentiated transfonnations and positional or directional judgements are both feasible 

possibilities in this case. 

I 

Figure 4.29 (Mark) 

I: This second ohe [pattern 2]. Tell me what you did first. 

M: I did that one first ... and then 1 didn't know what else to do so I did another 

one pointing a different way ... and then I thought turn it up ... so that's going 

that way ... and ... like they were rolling. 

I: It's rolling ... okay, now which way is that rolling? 

M: (pause) ... backwards ... cause if that was there and you turned it there it'd be 

going like that [gestures an anticlockwise rotation with his hand as he moves it 

from left to right]. 

I: Okay, so it was rolling that way (mimics Mark's gesture), which was the 

opposite way to which a clock goes? 

M: Anti-clockwise. 

I: And then what happened when you went over there? (points to right of second 

figure). 

M:Um. 
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I: After you drew the second one, what did you do then? Did you go over here? 

(points to fifth figure in pattern). 

M: Oh ... I did that there (points to the third figure). 

I: The third one? 

M: Yeah. 

I: And did it roll again ... like last time? Were you thinking about it rolling? 

M: Oh yeah ... "cause it sort of goes like that ... like um ... points of a clock ... 

there ... there ... there ... like it's going backwards on the points of a clock. 

This interview extract suggests that an explicit rotation incidence method (quarter-tum) 

has been employed with a D 1 figure. The symmetry of the D 1 figure was probably 

implicit, particularly since it was a well known motif. The overall symmetry classification 

of the pattern (fig. 4 .29) is pl 12, clearly not a good indicator of the complexity use of 

transformation geometry in this example. (See fig. 2.24.2 for a similar construction). 

Figure 4.30 (Rachel) 

I: This one here. Tell me how you drew this pattern. What did you draw first, 

what did you draw second, and so on? 

R: I did that one and then I did that one. 

I: So you did the one at the far left ... ? 

R: Yeah. 

I: And then you did this one [figure adjacent to far left]? 
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R: Yeah. 

I: So what were you thinking of when you drew the pattern? 

R: Bears. 

I: Okay. What did you think of when you went from there to there ... from the 

first to the second one? 

R: ... (long pause) ... not sure. 

I: Alright. So you've said that you went that one, that one, that one, and so on. 

R: Yeah. 

I: You didn't draw all of those ones first and then go back and do those ones, did 

you? 

R: No. 

I: So ... um ... if you were going to describe this pattern, what would you say? 

R: Just bears ... going up down up down ... I dunno. 

Initially, Rachel mentioned only two elements; a base pattern constructioµ seemed likely. 

However, her expression "up down up down" strongly supported the possibility of half­

tum or possibly horizontal reflection incidence. But while this is explicit, the explanation 

may have been a directional judgement, or the transformation may have been 

undifferentiated. The latter seemed likely, since Rachel didn't distinguish the horizontal 

reflection and the half-tum of a C1 figure further on in the interview. Therefore, this 

example was probably a classic example of inversion. Unfortunately, it was difficult to 

draw any further information from Rachel to confirm this; furthermore, her description 

didn't necessarily coincide with her construction method. 

Base pattern and incidence constructions certainly display some similarities in the use of 

transformation geometry. A somewhat different 'pattern parts' method is alternation type 

2, in which the use of transformation geometry does not appear to be particularly rich. 



LJUlfJLf:T '+ unresrncrea rauern consrrucrwn l{esuus lLU 

Alternation Type 2 
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Figure 4.31 (Alan) 

I: What order did you do this pattern in? What did you do first ... and what did 

you do second? 

A: I did the line first and then the 'O' ... back and forth like that. 

Clearly, any intuitive transformation geometry was only present in terms of the implicit 

symmetries of the figures, and the implicit translation of the translation unit. This 

contrasts with the alternation type 1 where the use of translation is more explicit. 

4.4.2. 'Whole' Pattern Construction 

This method of frieze design was characterised by a sense of the whole pattern. It 

occurred in two main forms: tilings and filamentary patterns. In the first case, a 'whole 

pattern' was divided in to congruent parts, that is, a monohedral tiling of the strip. The 

second instance was the drawing of a curve extending the length of the given strip. 

Division of the Strip into a Tiling 

l/ I I I I l I \ I(! L [ I { I /77 7 Z z llftj 
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Figure 4.32 (Alice) 

I: Tell me how you made this pattern. 

A: Well ... I just made a line down ... along there ... and then I went back and did 

the downwards lines to make ... um ... squares. 
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A sense of the whole pattern is clear from the first phase of the drawing. This is clear 

example of a tiling. The translation symmetry of the whole was probably explicit 

(division of the whole), while the other symmetries of the whole (e.g., vertical or 

horizontal reflection, half-tum) were more likely to have been implicit. The symmetries of 

the parts, namely the squares, were also implicit. 

Filamentary Patterns 

A filament is defined by Grtinbaum and Shephard (1987) as the image of a strip's mid.line 

under a homeomorphism of the · strip onto itself. But for the purposes of describing 

human behaviour, it seems more appropriate for the expression 'filamentary pattern' to 

mean that the creator has drawn a curve (not necessarily simple or smooth) extending the 

length of the given strip without lifting her or his pencil. Such a pattern may have other 

markings or superimposed patterns on it as well. 

Patterns with smooth curves are clearly filamentary in construction method. For example: 

Figure 4.33 

Since the whole pattern was an infinite figure (curve), that is, a complete entity in itself, 

the symmetries or transformations used were probably implicit, including translation. 

Certainly, no incidence method has been used to produce this. On the other hand, what 

appeared to be filamentary patterns at first glance, were later revealed in the interviews to 

be base pattern constructions. See Toni's pattern above in the 'Base Pattern' discussion. 

There rriay be more Primary school students who don't imagine the patterns extending to 

infinity than indicated by the number who did not produce No Translational Symmetry. 

Many may have simply been filling in the empty strip not imagining it extending any 

further; the design that could actually be seen was the pattern. This possibility seems quite 

likely given the regular occurrence of 'finite' descriptions in activity (c); see chapter 6 for 

details. 
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4.4.3. Superposition Constructions 

Superposition involves the construction of a pattern in two, or sometimes more, distinct 

phases. The first phase usually used either a form of incidence (base pattern) or 

occasionally, a filamentary pattern. This was done in a strictly left to right fashion. The 

second phase comprised the altering of the original pattern in some way, which often 

changed the frieze group classification or the symmetry of the figures in the pattern. This 

second phase was done in a variety of ways, from the light ornamentation of a pattern's 

figures to the placement of another row of figures alternating with the previously drawn 

figures in the original to the overlaying of another filamentary pattern. Superposition 

then, could involve either, or both, 'repeating parts' construction and 'whole' 

construction. 

Ornamentation 

It is not easy to define the process of ornamentation. For our purposes, it will be 

considered to be a marking within a pattern's figures or tiles, or motifs proximate to a 

filament. The distinction between this method and the overlapping of rows is 

psychological, not mathematical: essentially, it is the difference between embellishing a 

pattern and superimposing another pattern over the top of a first. 

Figure 4.34 (Mary) 

In the first phase of this disjoint example, this pattern constructed was a pmm2. Mary 

indicated that she drew the fish from left to right. She "made them go the opposite way 

each time". In this case, a vertical incidence construction has generated the 'phase 1 

pattern'. Of course, what appears to have been an indication of vertical reflection 

transformation may simply have been a directional judgement or an undifferentiated 

transformation. This wasn't established; but in any case, it was explicit. 

No questioning was undertaken regarding the horizontal reflection symmetry of the fish. 

Nevertheless, the fact that it was a mono-oriented object strongly suggested that this 

symmetry was implicit. Furthermore, Mary didn't consciously notice any asymmetry 
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effect from ornamenting the fish (in phase 2) with facial features other than 'filling in' 

each one: 

I: Did it change the look of the pattern after you did that? 

M: Yes ... it didn't look empty. 

I: Anything else? 

M:Nup. 

After ornamentation, the pattern became a pml 1. This final frieze classification conveyed 

Mary's explicit use of transformations quite well. Two generators of the pml 1 pattern, v1 

and v2, seemed most appropriate to describe the process of constructing the pattern. In 

this case, the symmetry group element not in the generating set was translation and it was 

therefore at least implicit. For contrast, let us now consider the following 'connected 

example. 

; · , 

. ,/ . . : : 

Figure 4.35 (Alice) 

I: ... how did you make this pattern here ... number 3? 

A: Um .. , I just did a line ... and then ... and then ... that was supposed to be a 

big box ... and then that a smaller one ... and just going like that. (with two 

fingers pointing to each of the squares on the far left of the pattern, Alice moves 

her hand in discrete movements from left to right). 

I: Yeah. 

A: I just did a line there and then a line there and left a space and then I just did 

another line along there. 
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I: Okay, ... then did you do the shading at the end, after you had drawn all the 

squares, or did you do it as you went (points left to right along pattern)? 

A: I did it at the end. 

The intention here was initially the repetition of , spacing the base pattern so 

the whole pattern would be connected. This base pattern construction was clearly not a 

tiling, despite appearances. The shading was an example of ornamentation, since it was 

done after the whole pattern was drawn and within a figure. Alice probably didn't have a 

sense of the symmetries of the whole of this pattern, but rather implicitly used some 

symmetry in the finite figures, that is, the squares. Which of these were intentional, and 

which were accidental was not explored; in general it was difficult to explore implicit 

symmetry. 

Superimposing Rows 

Figure 4.36 (Richard) 

I: What order did you do this pattern in? 

R: I can't remember. 

I: For instance ... did you go 'triangle star triangle star triangle star' , or did you 

put all the triangles in first and then go back and do the stars? 

R: Oh ... I did all the triangles in first. And it looked funny so I put the stars in 

.. .I was going to put triangles up the top but I thought "na!" and put stars in the 

middle instead. 

Richard has shown a clear example of the superimposition of two rows of figures, 

namely triangles and stars. There seems to have been a slightly stronger sense of the 

whole in this pattern; Richard looked at his design at the end of phase 1 and evaluated 

"it". This perception involved a sense of translation symmetry (the 'whole') combined 

with the implicit symmetry of the mono-oriented figures that Richard used. 
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Overlaying Filamentary Patterns 

Figure 4.37 (Kate) 

I: Tell me about this pattern. 

K: Um ... I don't if that was meant to be a pattern or whether that was a mistake 

... I think it was a mistake. 

I: Oh ... well ... whereabouts in the pattern did you start? 

K: I started with this bottom one ... 

I: With the bottom one ... 

K: I did that middle one ... and I went up and up ... and then I decided that I 

couldn't go over [the strip border] ... so then I just did those small pieces there. 

This example reinforces the view that the intuitive symmetry in continuous curves was 

probably implicit, and almost certainly not explicit. Indeed, Kate seemed puzzled about 

how it could be a pattern, which suggested that the translation or repeating facet of the 

pattern was not explicitly used in the sketching of each curve. However, there seems to 

have been an explicit use of a vertical translation of the 'sine curve' at each phase 

succeeding the first. 

Besides the methods given above, more elaborate superposition also ensued. This 

appeared in some of the patterns drawn in more than two phases. For example, 

Figure 4.38 (Alice) 
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This ornamentation occurred in three phases. The first consisted of drawing a horizontal 

line midway between the strip borders. This could be classified as a pmm2 filamentary 

pattern. The second stage involved drawing a continuous curve beneath it which rendered 

the new pattern as a pml 1. Any use of symmetry here was thus implicit. The final part of 

the design was the ornamentation with 'stripes'; the frieze group became p 111. (Not 

surprisingly, Alice was one of the few Primary children who made nearly all of her 16 

patterns as connected. These included all three styles of connected patterns, an 

overlapping pattern, and six of the seven symmetry groups, including two examples of 

plml and excluding only plal). 

One pattern, by Mary, appears to display an integration of both a 'parts' and a 'whole' 

conception. 
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Figure 4.39 (Mary) 

4.5 Summary of Activity (a) 
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In both the Primary and Secondary age groups, the most commonly drawn frieze groups 

were plll, pmll and prnm2. Both plml and plal were very rare. The frequency 

distribution of the five frieze groups with translation and (at most) one other kind of 

symmetry allowed a rough ordering to be made of 'how intuitive' each of the four rigid 

transformations of the plane was in the construction of these patterns. This list is shown 

below. 

1. Translation (common and frequent) 

2. Vertical Reflection. 

3. Half-Turn 

4. Horizontal Reflection. 

5. Glide Reflection (uncommon and infrequent) 

However, the implications of these results to frieze patterns with more than one kind of 

symmetry (besides translation) was argued to be dubious. 
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The classification of the patterns was further refined and it was found that all the 

symmetry groups, apart from pma2, were most commonly disjoint for the Primary 

group. Indeed 75% of all the Primary students' patterns were disjoint. The Form Four 

group differed in that the proportion of disjoint to connected patterns was almost equal. 

A qualitative discussion followed, highlighting the common classification ambiguities, 

and the intuitive transformations or symmetries present in those designs without 

translation symmetry. As predicted by Moyer and Johnson (1978), and Lesh (1976), the 

frieze group classification had the benefit of being methodical and quantifiable but it had 

shortcomings. Three of these are listed below: 

Firstly, there was no reason to suppose that any symmetries of the whole pattern were 

even implicitly intended by the drawer, apart from some continuous examples. In fact, 

there is evidence to suggest many Primary children conceive their patterns to be finite. 

Secondly, several accidental symmetries of the whole seemed to result from the 

positioning and spacing of figures. Furthermore, it seems quite likely that some 

symmetries could easily have been accidental spin-offs from the composition of other 

intended ones. This motivated the design of activity (b). 

Thirdly, some patterns contained more complex symmetries than indicated by the frieze 

group classification. 

Therefore, while the quantitative results gave clues to the construction methods used by 

the students, a more qualitative exploration involving interviews was undertaken to find 

out the motivations of the Primary school subjects. Most importantly, the determination 

of the order in which a pattern was constructed gave the strongest indications of the 

character of the intuitive use of transformation geometry. Several different construction 

methods were identified, each having its own particular use of symmetry operations and 

understandings of those operations. 

For example, a base pattern construction implied an explicit use of translation and usually 

an implicit use of other symmetries, most often the vertical reflection symmetry of mono­

oriented figures. This appeared, from observations, to have been the most common 

design mode. Alternation type 1 was a special case where the base pattern comprised of 

two disjoint, non-congruent elements. Other construction methods are outlined below. 
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A 'non-trivial' incidence construction implied the use of an explicit transformation to 

'generate' the pattern. This occurred in several different ways, the most common being 

the 'turn upside down' undifferentiated transformation where a half-tum or a horizontal 

reflection, combined with translation, weren't distinguishable to the creator. Directional 

or orientational judgements may have been integral to the meaning of this construction. 

Alternation type two implied a strict left to right alternation, each figure being drawn in 

reference to its immediate predecessor. Therefore, the intuitive transformation used was 

the implicit translation of two figures. The translation symmetry of the whole was not 

established by interview. 

A division of the whole pattern into equal parts implied a sense of the whole pattern The 

intuitive use of translation was thus explicit and, quite possibly, of the whole. Internal, 

implicit symrneoies of the tiles were usually present. The relationship of the tiles to one 

another wasn't explored. 

Filamentary patterns provided the best examples of a sense of the 'whole'. The intuitive 

transformation geometry used was clearly implicit however. 

The superposition of patterns occurred in three main forms: ornamentation, 

superimposing of two rows (alternation type 3) and the overlaying of filamentary 

patterns. The feature of these designs is that they were drawn in two or more phases. A 

sense of the whole is suggested to some extent by this. However, the character of the 

transformation geometry used was chiefly determined by the method used at each phase 

of the pattern's construction. 

In general, it was not possible to determine the construction method used to make a 

pattern from the end result, since more than one method existed for most patterns, 

particularly disjoint ones. From the arguments in the literature review (subsection 2.2.1), 

it was not surprising to find that the children's descriptions of their methods, rather than 

the frieze group classification, provided the most accurate reflection of the actual intuitive 

use of transformation geometry in the unrestricted construction of frieze patterns. 
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In this chapter we examine some of the trends in the restricted construction of frieze 

patterns involving the same set of students from the previous chapter (as well as 

additional Secondary classes and a Tertiary group), and attempt to link these trends to 

intuitive transformation geometry. The students were required to fill in as many of the 

empty strips as they could using only right-angled, scalene triangles (in any way they 

wished) to make different 'repeating patterns'. 

As before, a quantitative analysis of the patterns drawn in activity (b) is made and is 

supplemented by a descriptive analysis of the patterns (although this is not as detailed as 

in the previous chapter) . In addition, some case study material is included. Tables of the 

results can be found in the appendix B; the related column chans are in sections 5.1 and 

5.2. A summary of the activity (a) and activity (b) pattern construction methods and the 

intuitive transformation geometry associated with them is given in subsection 5.4.5. 

5.1. Survey Results from the Primary Schools 

5.1.1. Frieze Group Analysis 

The frieze group analysis of the restricted pattern construction is of the same form as for 

the unrestricted pattern construction. Graphs 12, 13, 14, and 15 respectively indicate the 

distribution of the designs amongst the frieze groups, the number of Primary students that 

made each group, the average number of each pattern produced*, and the frequency 

distribution of the first three patterns produced. Again, strong similarities between the 

profiles of these four column chans indicate a fairly clear ordering of the 7 frieze groups: 

l.plll {t} (common and frequent) 

2. pmll { t, V} 

3. p112 {t, 1/2} 

4. pma2 { t, V, l/2, g} 

5.pmm2 { t, v, 1/2, gt, h} 

6. plal ~ plml { t, g} ~ { t, gt, h} (uncommon and infrequent) 
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The generators for each frieze group have been listed beside them for consideration in the 

transformation and symmetry analysis portion of this subsection. 

The -relative 'intuitive-ness' of the frieze patterns suggested by the results of the restricted 

activity seem to be .more clear than the corresponding inferences made from the 

unrestricted activity. Note also, that pma2 has been itemised above pmm2 since it is 

higher on three of the four measures (with the average-number* graph presenting a slight 

disparity). In addition, plal and plml have been placed on the same level since they are 

equal on three of the four measures, with plal marginally higher in graph 15. 

In all four graphs, p 111 stands out very clearly above the other categories. For instance, 

87% of the children made at least one p 111 pattern and it comprises 42% of all patterns 

produced. Half that number of patterns were made as the next most popular frieze group, 

pml 1, and 7 out of every 10 students made a pattern with this underlying symmetry 

group. For each of the other categories, less than half the students made a design of those 

types. The percentage of patterns that were plal or plml was particularly low (1.9% and 

1.7% respectively). 

There are several important differences between the frieze group results for activity (a) 

and activity (b) that should be noted. Firstly, the proportion of patterns that were p 111 's 

in activity (b) was double that of activity (a). Secondly, the frequency and commonality 

of the pml 1 was clearly less than pl 11, but greater than all the other frieze groups. 

Similarly, the position of pmm2 dropped considerably in the 'intuition order', and the 

p 112 became a clear third, above the previously more commonly drawn frieze groups, 

pma2 and pmm2. 

The activity (b) results suggest that there may have been more pll2's resulting from the 

unrestricted pattern construction activity than indicated by the graphs in chapter 4, 

because many ambiguities between p 111 (touchings) and p 112 (tilings) existed. With the 

decrease of this ambiguity in activity (b), the increase in the pl 12 proportion of the 

'restricted' total was not unexpected. 

Finally, the number of 'No Translation' cases comprised a greater proportion of the 

patterns than the corresponding designs in activity (a). No explanation is given for this 

other than the fact that most of the Primary students reported that they found activity (b) 

harder than activity (a); the difficulty of drawing right-angle scalene triangles may have 

distracted them from the task of displaying repetition in their designs. 
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From the ordering given above, we are now in a position to make some inferences about 

the presence of transformations (intentional or not) in these patterns. Clearly, translation 

was common to almost all the designs. This was not surprising, since the instructions 

explicitly asked for translation via the phrase "repeating patterns". Indeed, 

translation is a mathematical requisite of the 7 frieze groups. The evidence of translation's 

intuitive use is therefore suggested by the relative ease in which the children understood 

the concept. Expressed quantitatively, the percentage of designs which didn't show 

enough evidence of translation symmetry to be classified as a frieze group (11.4%) was 

not great. 

For the non-translation transformations, we can make stronger inferences from the 

symmetry elements of each frieze group. In particular, upon considering the ordering of 

the groups with translation and one other kind of symmetry in them, we obtain the 

following list (using a similar argument to that of section 4.1.2): 
I 
I 

1. Translation (common and frequent) 

2. Vertical Reflection 

3. Half-Turn 

4. Glide Reflection ~ Horizontal Reflection (uncommon and infrequent) 

If this ordering of the rigid transformations' relative 'intuitive-ness' is correct, then it 

seems reasonable that the frieze groups pmm2 and pma2, which have both rare and 

common symmetries, are in the middle of the list. For instance, pmm2 may have been 

made from vertical reflection and horizontal reflection as well as translation. In a similar 

vein, pma2 may have been produced from vertical reflection and non-trivial glide 

reflection as well as translation. Furthermore, since the proportion of generating sets for 
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pma2 containing only the commonly drawn symmetries is higher than pmm2, it also 

seems natural that pma2 has occurred higher up the list than pmm2. 
\ 

But these conjectures assume independence in the combination of the symmetries used. It 

may be that the combination of vertical reflection and half-turn symmetries with 

translation is more difficult for the Primary children to manage than either symmetry is 

with translation by itself. This difficulty would also result in pmm2 and pma2 being 

below p 111, pml 1 and pl 12 on the list. This question of independence is pursued further 

in the activity (b) interviews and in chapter 6. 

Another matter to be considered is the comparison of the activity (a) and (b) results. For 

instance, the symmetry group pmm2 occurred far less frequently than expected from the 

activity (a) results. This suggests that some of the symmetries present in pmm2 in activity 

(a) may have been incidental or even accidental. In particular, if the symmetries were used 

independently then (from the list above) it seems likely that the horizontal and trivial glide 

symmetries may have been accidental in some instances of drawing pmm2 in activity (a). 

Similar questions are raised with respect to accidental symmetries in other symmetry 

groups, especially pma2. 

But an even deeper question evolves. The discussion above has proceeded as if the 

differences between activity (a) and (b)'s results are attributable solely to a reduction in 

accidental symmetries. But, as pointed out in chapter 3, the differences may also lie in tile 

nature of the figure that was used to make up the activity (b) patterns with. After all, 

many of the figures drawn in activity (a) were representational; and the representations 

were frequently of mono-oriented, D 1 (v) symmetry groups. Could it be that some 

symmetries or transformations are more difficult, or easier, than others to perform when 

using a right-angled scalene triangle than with some other C1 figure? Given the literature 

(Lesh, 1976) on the effect that an object's form can have on the use of various 

transformations, the answer may be "yes." 

Furthermore, connected frieze groups were not as likely to be constructed with triangles. 

It may have been that connected patterns were not suggested by the instructions: to make 

repeating patterns with right-angled scalene triangles (i.e, a 'repeating motif framework 

may have been set up). Given the strong relationship between the method employed to 

produce a pattern and intuitive transformation geometry concepts, it does not seem 

surprising that the restricted activity, by reducing the possibilities for making a connected 

frieze pattern, displays some differences to activity (a) in the frieze group distribution. 
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In this study then, one main reason for the differences between the two drawing activities 

was probably a reduction in accidental symmetries; but this is coupled with other 

considerations such as the differing construction methods associated with each activity, 

and the effect of the figure used to construct the activity (b) patterns. The implications of 

the restricted pattern construction results to the intuitive use of transformation geometry 

should be understood in that light 

5.1.3. Construction Analysis 

The main point to be made here is that each of the frieze groups had its own distinctive 

style distribution. Compare the graphs 16 (i) - (vii). This variation between the symmetry 

groups suggests that differing construction methods, and hence conceptions of the 

patterns, have been used. The intuitive use of transfonnation geometry, therefore, seems 

to have occurred in a variety of ways in activity (b). Nevertheless, the style analysis of 

the total suggests that some methods were far more common than others, that is, 78% of 

the Primary activity (b) patterns were disjoint; only 5% were in the tiling/continuous 

category. 
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Graph 16 (i) - Style/Type Distribution of 

p111 (Primary) 

PS1 NOP Tou Ti I/Cont ? 

The pattern p 111 was predominantly disjoint. Interestingly, there were as many p 111 

examples which are non-discrete, mono-motif patterns (NDP's) as there are di screte 

patterns. The most common reason that disjoint patterns were non-discrete was that the 

motif was not connected. If the disjoint motif was comprised of two connected 

components, then some form of alternation was probably present. If more than two 

components made up the motif then a base pattern construction has probably taken place. 

This information suggests that plenty of implicit symmetry of figures could be present in 

these patterns, and that translation has been used explicitly. 
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As expected, plml occurred with very low frequency, so our conclusions are tentative in 

this case: it seems that it was unusual to draw non-discrete and tiling p 1 ml 's. The 

number of PS3's and PS4's was roughly equal. In the first case, the horizontal symmetry 

was explicit (although not necessarily differentiated from half-tum, i.e., both are upside 

down). In the second case, because the participants were using C1 figures, the horizontal 

symmetry may also be explicit but possibly less so since the motif must be a connected 

D 1 (h) figure. No examples of ND P's were produced, indicating that the horizontal 

reflection of a complicated or disjoint motif was not intuitive. Some touchings were also 

observed, and suggested a repeating D1 (h) figure, as for PS4. 
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Graph 16 (iii) - Style/Type Distribution of 

pm 11 (Primary) 
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The graph of pm 11 's style breakdown indicates that the disjoint styles were also the most 

natural way to construct this frieze group with the right-angled scalene triangles, with the 

connected D 1 (v) figure patterns (PS6) occurring slightly more often than the PS5. This 

suggests that both the 0-order and high order incidence associated with each of these 

types may have been used. The number of pm 11 patterns made using shapes that weren't 

right-angled scalene triangles was relatively higher than most other groups. These 



Chapter 5 Restricted Pattern Construction Results 136 

patterns were generally made up of vertically aligned isosceles triangles; a version of 

PS4. The vertical reflection used in this case was probably implicit. 

Graph 16 (iv) - Style/Type Distribution of 

p1a1 (Primary) 
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The graph of plal, although based on small numbers, suggests that the discrete PS2 is 

the predominant style. It does not appear to be 'natural' for the children interviewed to 

draw connected or even non-discrete, mono-motif patterns of this symmetry group. 
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Graph 16 (v) - Style/Type Distribution of p112 

(Primary) 

PS? PS8 NOP Tou Til/Cont ? 

The distribution of the p 112 styles is different from the previous symmetry groups 

considered in that the tilings feature prominently in the graph's profile. This seems to be 

one of the two main ways that right-angled triangles are fitted together to fill out the strip. 
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Graph 16 (vi) - Style/Type Distribution of pmm2 (Primary) 

PS12 PS13 PS14 PS15 NOP Tau Til/Cont ? 

The pmrn2 profile is very clear. The most common way of producing such a pattern is by 

translating a D2(v) motif (a base pattern construction) 

1 2 

1 0 

8 

6 

4 

2 

0 

Graph 16 (vii) - Style Distribution of pma2 (Primary) 

PS9 PS10 PS11 NOP Tou Til/Cont ? 

The graph of the pma2 frieze group is characterized by tilings and the three discrete types. 

It seems that pma2 is another natural result of fitting the right-angled triangles together to 

fill an empty strip. PS9 and PS 11 occurred more often than PS 10, suggesting that using 

figures with half-tum symmetry in them was not as 'natural' for the subjects as using 

figures with vertical reflection symmetry in them. All three discrete types were probably 

made by an incidence construction. Also, a high proportion of pma2's were made from 

inappropriate triangles. Similarly, most of the pm 11 patterns consisted of vertically 

aligned isosceles triangles, suggesting an incidence construction. 

Comparing the results and interpretations of the seven frieze groups for each activity 

reveals other more general conclusions. For example, while the activity (a) patterns often 

featured familiar figures, suggesting that the use of symmetry was usually implicit, many 

activity (b) patterns showed a more explicit use of transformation geometry. In the 
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restricted exercise, the most likely examples of the implicit use of symmetry were the 

PS4, PS6, PS 11 and PS 15 patterns made with isosceles triangles. 

However, while it may be reasonable to suppose that base pattern or incidence 

constructions were used to produce the disjoint patterns, it is more difficult to assess the 

way in which transformation geometry has been used to produce the activity (b) tilings. 

This information is important to find out since pl 12 and pma2 were the most frequent 

results of a tiling by the Primary school children. Interviewing is needed to find out more 

detail about how the tilings were constructed. 

Finally, the use of C2 figures (e.g. PS8 and PSlO) was relatively low, and was much 

less frequent than the use of D1(v) figures, although more frequent than the use of D1(h) 

figures. This ordering of the finite symmetry groups shows a close parallel to the 

ordering of the frieze groups and the rigid transformations given above. 

5.2 Age Group Comparison 

5.2.1. Frieze Group Analysis 

By considering graphs 17, 18, and 19, we can construct an ordering of how 'natural' the 

various frieze groups were for_ each age group (as argued in subsections 4.1.1 , 4.1.2 and 

4 .2 .1). 

45 

40 

35 

30 

25 

20 

1 5 

1 0 

5 

Graph 17 - % Frequency vs Frieze Groups (Age Comparison) 

0 ..ia ..... ..--.'-1+ 
p111 p1m1pm11 p1a1 p112pmm2 pma2 Un NoT 

clear Sym 

• Primary 

D Secondary 

111111 Coll of Education 



Chapter 5 

100 

90 

80 

70 

60 
50 
40 

30 
20 

1 0 

0 

Restricted Panern Construction Results 

Graph 18 - % of Students vs Frieze Groups (Age Comparison) 

p111 p1m1 pm11 p1a1 p112pmm2pma2 Un NoT 

clear Sym 

• Primary 

D Secondary 

II Coll of Education 

Graph 19 - Average Number of Students· vs Frieze Groups (Age Comparison) 
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Graph 20 - % Distribution of First Frieze Groups Made (Age Comparison) 
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Table 5.1 

Primarv Order Secondary Order Tertiary Order 

1 pll 1 pll 1 pl 11 

2 pmll pl 12 pmll 

3 p112 pm 11 ~ pmm2 ;:::: pma2 pl 12 

4 pma2 plml pma2 ~pmm2 

5 pmm2 plal plml ~ plal 

6 plal ~ plml - -

The most striking features in this comparison of the ordering of the frieze groups drawn 

by each age group are: 

1. p 111 always appears at the top. 

2. plal and plml are at the bottom. 

3. pm 11 and p 112 are listed above all the other frieze groups, apart from p 111. 

4. pmm2 and pma2 always appear between the commonly drawn frieze groups (pll 1, 

pml 1, pl 12) and the unCOrl],£!1..0llly drawn frieze groups (plal, plrnl). 

Also, between 10 and 13% of the patterns contained insufficient evidence of translation 

symmetry for all three groups, and the number of patterns for whom the frieze group 

classification was ambiguous was also small in every age group. 

Another interesting point to note is that the results of the pre-formal (Primary) and post­

fonnal (Tertiary) age groups appear very similar in graphs 17, 18, 19 and 20, as well as 

in the ordering of the list of frieze groups above. The during-formal group (Form Fours) 

stands out in a variety of ways, the most obvious being the proportion of Secondary 

students that made p112 as their first pattern (47 %); for the Primary and Tertiary 

students, 14% and 19% respectively. The most important differences, however, are the 

distributions of the frieze patterns and the number of students that made them. 

The method of construction also appears to have varied between all the groups. For 

example, almost 80% of the Primary patterns were disjoint, for Tertiary 60% and 

Secondary 30%. This suggests that base pattern construction, or possibly incidence 

construction, appears to have been the most popular mode of design for the pre-formal 

and post-formal transformation geometry groups. When we consider that touchings were 

also probably the result of incidence, that conclusion seems even stronger. In contrast, 

41 % of the Secondary patterns were tilings (or of the continuous style) indicating that as a 
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group, the Fourth Form subjects probably used a greater variety of methods than the 

other two groups, and hence a more rich use of transformation geometry. 

The fact that the Primary and Tertiary groups did produce similar frieze group profiles on 

four 'measures' of 'intuitive-ness', and seemed to use similar construction methods, 

indicates that the Tertiary students' use of transformation geometry may be more intuitive 

than that of the Form Four students'. In other words, the formal transformation geometry 

framework seems to have had an effect on the Secondary students' patterns, but this 

effect may ruminish substantially thereafter. 

The four main observations related to the 'ordering' of the frieze groups (with respect to 

'how intuitive' they were) showed strong similarities between the three different subject 

groups. We can summarise them as follows: 

1. plll (common and frequent) 

2. pml 1, p112 

3. pma2 2'. pmm2 

4. plml, plal (uncommon and infrequent) 

Again, the patterns with translation and more than one other kind of symmetry occurred 

below the p 111, pm 11 and p 112 frieze groups and above p 1 a 1 and p 1 m 1. This fact raises 

the same question as outlined for the Primary children section above: is the position of 

pmm2 and pma2 in the list a result of a dependent combination of intuitive symmetries, 

or is it due to an independent combination of both intuitive and non-inntitive symmetries? 

5.2.2. Transformation Analysis 

We might be tempted to conclude that vertical reflection symmetry and half-turn 

symmetry are equally intuitive from the above results, but the following consideration 

shows that this is probably not the case. The Primary and Tertiary results both suggest 

that vertical reflection (pml 1) is more intuitive than half tum (pl 12), whereas the 

Secondary results imply the converse (this is why pm 11 and p 112 are placed together). 

When we consider that the Primary and Tertiary groups are not actively engaged in the 

learning of the formal transformation geometry framework, it seems fair to conclude that 

the Fourth Form results reflect the influence of this framework, and are therefore not as 

intuitive according to our working definition. For this reason, vertical reflection is placed 

above half-turn in the intuitive ordering. 
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We can now state with some confidence, the ordering of intuitive transformations used in 

those patterns with translation and one other kind of symmetry: 

1. Translation (common and frequent) 

2. Vertical Reflection 

3. Half Tum 

4. Horizontal Reflection and Glide Reflection. (uncommon and infrequent) 

The fact that the ordering of the frieze groups, and hence the transformation ordering, 

was roughly the same for all three age groups suggests that, while the formal 

transformation geometry framework has some effect (on the Tertiary and especially the 

Secondary students), a strong intuitive transformation geometry influence exists in the 

construction of frieze patterns for all three age groups surveyed. 

5.2.3. Style Analysis 

From graphs 21 and 22, it is quite clear that the Primary and Tertiary students produced 

similar style of patterns; the distribution of the Secondary students' pattern styles 

contrasts markedly with the other age groups in three categories: discrete, non-discrete 

mono-motif patterns, and tilings. Since the styles were designed to provide helpful clues 

to the construction methods used to make them, we can conclude tentatively that the 

Primary and Tertiary students were probably more alike in their construction methods 

than either group was to the Secondary methods. 

The Form 4 subjects, having been recently exposed to the transformation geometry 

framework, displayed a different style distribution that suggested a greater emphasis on 

the methods associated with tilings. Of course, the proportion of Secondary and Tertiary 

touchings is roughly equal. Why the distributions of these two agree in some styles, and 

not in others, is difficult to say. It might be the effect of the exposure that some of the 

Secondary pupils have had to tessellations and the like recently; of course this is merely 

conjecture. 

More telling, is the distribution of styles within various frieze groups. However, rather 

than make detailed comparisons between the age groups for every style in each frieze 

group, a few summarising observations will be made. For the relevant data see 

appendices Bl.3, B2.3 and B3.3. 
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Graph 22 · % of Students vs Style (Age Comparison) 
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p 111: The Primary students focussed on the disjoint types, whereas the older students 

made touchings as well. This suggests that more subjects from the older age groups may 

have had a 'sense of the whole' when constructing p 111 patterns. 
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plml: The Primary and Tertiary subjects made very few of these, with most examples 

either discrete or touching styles. The tilings and touchings formed the highest proportion 

of Secondary students' p 1 ml patterns. 

pml 1: All three age groups produced a similar style distribution for this frieze group. 

p 1 a 1: Interestingly, the Primary group produced a far higher proportion of p 1 a 1 's than 

the other groups, although numeracy was still small. The predominant style for the 

Primary group was PS2; for the post-Primary students, both PS2 and touchings. 

pl 12: This frieze group displays a sizable contrast between the Secondary and the other 

two groups. 80% of all the Secondary pl 12 patterns were tilings, compared with 51 % for 

Tertiary and 26% for Primary. In fact, 60% of the Secondary students made a p 112 

tiling. Also, only 15% of the Secondary patterns were disjoint, compared with 47% for 

Tertiary and 60% for Primary. The NDP was rare for all three groups. 

pmm2: The frequency of patterns, for each of the age groups, was low for PS 12, PS 13 

and PS 14. Most of the Primary patterns, however, were the discrete type PS 15; the 

majority of the Secondary patterns were tilings and few touchings; and the bulk of the 

Tertiary pmm2's were touchings. 

pma2: The distribution of the Primary and Tertiary patterns was quite similar for this 

frieze group, with the NDP and touchings occurring infrequently, and a fairly even 

distribution amongst the other styles. The Form 4 students focussed strongly on the 

tilings for the pma2 pattern (76% ). Indeed, almost half of the Secondary students 

produced a pma2 tiling. 

The style analysis of the frieze groups has revealed that the Primary and Tertiary groups 

are more alike than either is to the Secondary group in their pattern styles. However, for 

particular frieze groups (plll, plal, pmm2) the Primary and Tertiary results do differ 

somewhat in the style distribution, and therefore probably in the emphasis they gave to 

the various construction methods that they used. Having said that, the Primary/Tertiary 

differences in these three frieze groups may not be as pronounced as the above analysis 

implies, since the interview data shows that the base pattern construction is commonly 

associated with all the disjoint and touching styles. See the interview subsection for 

details. 
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5.3 Further Observations 

5.3.1. Frieze Group Ambiguities 

The occurrence of frieze group ambiguities dropped considerably from activity (a) to 

activity (b). The two main causes of frieze group ambiguity was the use of the strip 

border lines as part of the pattern, and the nature of the triangles drawn. 

Figure 5.1 (Alice ) 

Alice explained that she started by drawing a single "right angle triangle", and then 

repeated it along the strip. Until pointed out in the interview, she hadn't noticed the other 

set of triangles 'po inting' the other way. While this pattern looks like a p 112, from 

Alice's explanation of her intentions, it is clearly a p 111. The ambiguity has arisen from 

two aspects of the pattern: the presence of the border lines, and Alice's spacing of the 

triangles. This example was the most common form of frieze group ambiguity (from the 

point of view of the classifier). 

The use of non-right angle scalene triangles could also bring about categorisation 

difficulty, as the following pattern (fig . 5.2) shows: 

/j IJ- Ji \/ /'\ V /j AJ ~ t 
Figure 5.2 (Carla) 

The right-angle marks shown in this pattern were made by Carla during the interview. 

Before this was done, the frieze group was difficult to identify. It may have been 

classified as either pl ll(NDP), pl 12(PS7), or pmm2(PS13). After her graphic 

explanation, it seems clear that this was a pl 12 (PS7). Other interviewees did use 

isosceles triangles in some instances. This confusion between right angled scalene 

triangles and isosceles triangles may be due to similar side lengths or perhaps an affinity 

for D1 figures. 
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5.3.2. Style Ambiguities 

Alice's example (fig. 5.1) illustrated not only a frieze group ambiguity, but a style 

ambiguity as well. Given the way she made the pattern, it is best described as a touching, 

not a tiling. Similarly, Car~a's pattern (fig. 5.2) above also had a style ambiguity as well 

as an ambiguity i_n the symmetry group. It could easily have been classified as a non­

discrete mono-motif pattern (Pl 11) if the triangles were intended to be isosceles. 

The reasons for ambiguity in the patterns were the same whether they were between frieze 

groups or styles. The properties responsible for ambiguities were: 

1. Spacing of the triangles in a way that tilings and touchings can't be distinguished. 

2. Use of the border lines already provided. 

3. Ambiguously drawn figures. 

5.3.3. Accidental Symmetries 

Some symmetries recognised by the classification weren't intended by the drawer. The 

character of the accidental symmetries in this activity sheet was different from that of 

activity (a). In activity (a), many Dn figures contained symmetries which weren't intended 

by the drawers. In contrast, most of the activity (b) symmetry accidents arose from the 

confusion between symmetry groups due to the positioning of the triangles in the strip. In 

the above example, Alice had not even seen the 'other set of triangles', much less 

intended the half-rum transformation between adjacent triangles or of the whole pattern. 

It should also be noted that those patterns with properties 1 and 2 (above) often had extra 

symmetries which were not intended by the drawer. However, overall, far fewer 

examples of extra symmetries were found for activity (b) than for activity (a). Similarly, 

no examples of accidental symmetry were identified in the activity (b) interviews either. 

5.3.4. Vertical Patterns 

Table 5.2 

Frieze Group plll plml pmll plal p112 pmm2 pma2 

No. of Students 1 1 1 5 2 0 0 

Producing 
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The rarest types of symmetry groups for the horizontally drawn patterns were p 1 m 1 and 

plal. Yet, in this small interview survey of vertically drawn patterns, plal accounted for 

5 of the 10 patterns! It seems that the drawers' orientation relative to the empty strip has 

effected the nature of the frieze groups produced. A number of explanations could be 

given to support this view. For example, in the real world, the most common example of 

glide reflection is that of footprints (semi-egocentric) and walking (propriocentric), both 

of which are usually perceived in the direction of the median plane (x-axis). 

Another possibility is that the prevalence of (vertical) p lal 's may be due to a human's 

natural affinity for uprightness of the triangles (Fisher, 1978). Furthermore, vertical 

reflection incidence was not uncommon for the horizontally aligned patterns. From 

observation and questioning, the drawers appeared to use a vertical reflection (relative to 

themselves) as part of an inc idence construction (or base pattern construction) in the 

vertical patterns; a 'glide reflection' pattern naturally arises. 

5.4. Interviews - Case Studies 

lntroductio11 

The most important information gained from the interviews with respect to the restricted 

pattern rnnstruction was the methodology behind the patterns made . The subjects' 

explanations of their construction methods pinpointed the intuitive use of transformation 

geometry far better than the pattern classification system. 

In activity (a), the (unrestricted) construction methods identified were 'base pattern', 

'incidence', 'alternation (type 2)', 'division of the strip into a tiling' and 'filamentary'. 

Combinations of these in phases yielded various forms of superposition, such as 

'ornamentation', 'superimposing of rows' and the 'overlaying of filaments'. Several of 

these methods were used to make the activity (b) patterns too. But rather than present 

another full explanation of those methods here, this discussion will give one interview 

example of the same methods , leaving the more detailed discussion for the different 

construction methods that arose in activity (b). In addition, the activity (a) methods which 

didn't seem to have appeared in the activity (b) interviews will also be noted, and a table 

summarising the activity (b) construction methods will be displayed. Finally, a brief 

outline of the contrast between the interview responses to activity (a) and activity (b) will 

be made. 
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5.4.1. Similar 'Restricted' and 'Unrestricted' Construction Methods 

~ - L] 
Figure 5.3 (Mary) 

Mary began this pattern (fig. 5.3) by drawing the triangle on the far left. Then 

M: ... I put one back to it. 

I: ... ah ... what do you mean? 

M: That's back to back. 

I: So is this triangle [second] meant to be the same as that one [first]? 

M: Mmm ... but ... 

I: And how is it different? 

M: But it's sort of mirrored. 

I: I see ... after that, did you repeat the first pair or did you sort of mirror that one 

[second]? 

M: I did more back to back triangles (pointing to the first pair drawn). 

Reflection incidence can be ruled out; Mary's method was a clear case of base pattern 

construction. 

In fact, the most common example of discrepancy between the survey interpretations and 

the children's explanations was the method of constructing discrete patterns with C1 

motifs. The survey analysis argued as if these were most likely to have been made with 

an incidence method. The children who were interviewed, however, often made these by 

a base pattern construction. 
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High order incidence explanations were made for some discrete patterns where the motif 

was not a C1 figure and was not the translation unit. This suggests that the discrete types 

probably drawn with an incidence construction were PSlO, PSl 1, PS13, and PS14. 

Whilst high order incidence may have been used to produce ND P's or touchings, it seems 

that it was rarely used since only 26 of the 808 patterns drawn were one of the 4 types 

listed. One example follows: 

Figure 5.4 (Mary) 

Firstly, Mary explained the construction of the figure on the far left: 

I: What were you thinking of there? 

M: Um ... sort of [ ? ], something like that ... sort of triangle there and a 

triangle there ... and just thought of putting a line down there to make another 

one. 

The horizontal or half-turn symmetry present have not been mentioned, indicating that the 

use of such symmetry may be implicit and possibly undifferentiated in this pattern. Also, 

she has made the first triangle isosceles which suggests implicit vertical symmetry. But 

Mary continued to explain the rest of the construction, a clear example of the explicit use 

of vertical reflection incidence: 

I: ... And then ... ? 

M: Did the opposite ... so it'd mirror. 

I: Okay, what did you do then? 

M: Well that one [second motif drawn] mirrored that one [first motif] ... and that 

one [third motif] mirrored that one [second motifJ ... and so on. 

Richard's explanation of his pattern (fig. 5.5) displayed a clear example of superposition 

by ornamentation. 
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Figure 5.5 (Richard) 

R: I just drew the squares, and then I went back and put the lines in. 

150 

Amy also employed superposition (fig. 5.6). Her method differed in that two rows were 

constructed separately. Also notable is her explicit, although possibly undifferentiated, 

explanation of a transformation of the whole bottom row. 

Figure 5.6 (Amy) 

A: First I went along the bottom ... and then I went and did the top ... I turned it 

upside down and did the top the same as the bottom. 

I: ... um ... so are they [top and bottom rows] meant to 'line up' then? 

A: No .. . it's shifted along a bit. 

5.4.2. Additional Construction Methods 

The extra methods that appeared in the interviews for this activity were both tilings. The 

first (fig. 5.7) was the building up of a tiling from the triangles. That is, instead of 

dividing the whole strip into congruent tiles, as occasionally occurred in activity (a), each 

tile was drawn one at a time directly adjacent to the previous one so as to fill the given 

strip without any overlaps. The construction was very similar to the base pattern method. 

Figure 5.7 (Alice) 



Chapter 5 Restricted Pattern Construction Results 151 

A more puzzling tiling methcxl is displayed below: 

Figure 5.8 (Toni) 

I: How did you make this pattern, Toni? 

T: I just drew ... a straight line down, and a sloping line up, a straight line down 

and a sloping line up. 

I: Okay ... can you tell me where the triangles you drew are? 

T: There .. and there ... and there and there ... 

I: So you deliberately made these and these [both sets of triangles]? 

T: Yeah. I just did them as I went along. 

This could be interpreted as a base pattern construction, with the translation units 

together. But the adjacency of each triangle made in relation to the former triangle 

suggests the construction was a little different. The sense of continuity associated with 

Toni's use of one curve and the strip borders to make the triangles also includes a 

somewhat filamentary approach not usual in a base pattern construction. 

5.4.3. Different Restricted and Unrestricted Construction Methods 

It was harder to identify those activity (a) methods which were not used by the Primary 

students in activity (b), since it was quite possible that some of the students used pattern 

constructions not discussed in the interviews. 

Clearly, a single filamentary curve that didn't touch the border lines couldn't be drawn 

because triangles would not have been formed. The corollary of this observation is that 

the overlaying of such filaments probably did not occur. The interview example closest to 

that of a filamentary construction was Toni's (this is displayed above in the 'extra 

methods' discussion). 
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The 'alternation type 2' construction was also not identified in the interviews, although it 

is quite possible that it was used by some of the students who were not interviewed. 

Similarly, none of the interviewees seemed to have used the division-of-the-strip-into-a­

tiling method. Toni's pa~tern above could have been produced by this method, but it 

appears to have been the result of a slightly different approach. 

The interview data then, shows us that we must be cautious in making inferences about 

intuitive transformation geometry from the symmetry group, and even style, 

classification. Several different methods can produce exactly the same frieze group and 

style. On the other hand, it appears from the interviews that it was most common for one 

method to be used to produce a particular style of frieze group; recall, too, that most of 

the Primary patterns were disjoint so the base pattern construction was probably used for 

the majority of patterns. Therefore, the style analysis gives a methodical framework in 

which to make suggestive, but not conclusive, inferences about the intuitive use of 

transformation geometry. Given the interview data, those inferences can be modified or 

refined in a similar manner to the discussion of type analysis above. 

5.4.4. A Comparison or the Unrestricted and Restricted Activities 

In every Primary school, the unanimous opinion was that activity (b) was more difficult 

than activity (a). The two main reasons given for this were: 

1. It's harder to think of patterns with only triangles in them. 

2. Confusion about the concept of a right-angled (scalene) triangle. 

Perhaps the most noticeable feature of the Primary interviewees' activity (b) explanations 

was the increase in the use of words that were explicit in describing transformations or 

symmetries. For example, differentiated terms like "mirrored", "flipped over" and "turned 

around" were used a lot; undifferentiated terms or directional judgements such as 

"pointing the other way", "turn upside down" were also common. ln patterns of the same 

symmetry group, identifying the intuitive use of transformation geometry was easier in 

activity (b) than in activity (a). 

The best example of this contrast between the two activities was in the explanation of the 

symmetries within a base pattern. In activity (a), many of the figures within the patterns 

were representational in form, and little explanation of the symmetry of these figures was 

made. The symmetry of these figures then was implicit or, in some Dn cases (n ~ 2), 

probably accidental. In contrast, constructing the connected figures within the activity (b) 
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patterns required a more direct use of transformations and, correspondingly, the children 

would explicitly mention the transfonnation used as part of their explanation of how they 

made the base pattern. 

We can summarize the Primary children's methods associated with each activity sheet, 

noting any differences between them, if any, with respect to transfonnation geometry. 

Table 5.3 

Construction Explicit Implicit Accidental or Extra Notes 
Method Transformation Transformation Incidental 

Geometry Geometry Transformation 
Geometry 

Base Pattern, Translation of base Reflection All symmetries of 
activity (a) pattern. symmetry of Dn whole pattern. 

and rotation Rotation 
symmetry of Cn+ 1 symmetry in Dn 

figures (n 2'. 1 ). figures (n 2'. 2). 

Base Pattern, Translation of base All symmetries of * Cn and Dn 
activity (b) pattern. Reflection whole pattern. figures (n > 2) did 

symmetry of D1 Rotation not feature in any 
and Di and symmetry in Di interview patterns 

rotation symmetry * figures . from activity (b). 
of C2 figures. 

Incidence, Characteristic Symmetry of D1 All symmetries of Characteristic 
activity (a) incidence and C2 figures. whole pattern. incidence 

transfonnation Translation of Rotation transfonnation 
plus translation. translation unit. symmetry in Dn maybe 

figures (n 2'. 2). undifferentiated 
Incidence, Symmetry of D1 Translation of All symmetries of Characteristic 

activity (b) and C2 figures. translation unit. whole pattern. incidence 
Characteristic transfonnation 

incidence maybe 
transfonnation undifferentiated. 

olus translation. 
Tiling by Division Translation Non-translation Not identified in 

of the Strip symmetry of symmetries of activity (b) 
whole. Symmetry whole pattern interviews. 
of resulting fi!rnres 

'Filamentary' Translation of Translation Non-translation Not identified in 
Tiling translation unit symmetry of symmetries of activity (a) 

Transformations whole pattern whole pattern interviews. 
between adjacent 

tiles. 
Tiling by Building Translation of Translation Non-translation Not identified in 

( step by step) base pattern'. symmetry of symmetries of activity (a) 
Transformations of whole pattern. whole pattern. interviews. 

the tiles. Symmetry of 
adjacent tiles. 

Filamentary Translation plus Remaining Not identified in 
Pattern one other symmetries of activity (b) 

symmetry of whole pattern. interviews. 
whole. 
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Ornamentation Translation of ,. Translation Non-translation For first phase, see 
activity ( a) markings from one symmetry of symmetries of one of the above 

figure to another. whole pauern. whoie pattern. activity (a) 
methods. 

Ornamentation Translation of Translation Non-translation For first phase, see 
activity (b) markings from one symmetry of symmetries of one of the above 

figure to another. whole pattern. whole pattern. activity (b) 
methods. 

Superimposing Translation of Translation Non-translation For each phase, see 
Rows motifs in each symmetry of each symmetries of activity (a) base 

activity (a) row. ', row and of whole whole pattern. pattern method. A 
pattern. stronger sense of 

the whole is 
oresent 

Superimposing Translation of Translation Non-translation For each phase, see 
Rows motifs in each symmetry of each symmetries of activity (b) base 

activity (b) row. row and of whole whole pattern. pattern method. A 
pattern. stronger sense of 

the whole is 
oresent 

Overlaying Translation of Translation plus Remaining Not identified in 
Filaments filament. one other symmetries of activity (b) 

symmetry of whole pattern. interviews. 
whole. Both phases are 

filamentary (see 
above). 

5.5 Summary of Activity (b) 

For activity (b ), the most frequently and commonly arising frieze patterns were p 111, 

pml 1 and pl 12 for the three age groups. The unusual patterns were plml and plal. 

Based on the ordering of the 5 frieze groups that include translation and one other kind of 

symmetry, the ordering of the rigid transformations with respect to intuition is similar to 

activity (a). In spite of the instructions explicitly prompting translation, this 

transformation is placed at the top of the list because it was used easily by the Primary 

children: 

1. Translation (most intuitive) 

2. Vertical Reflection 

3. Half-Turn 

4. Glide Reflection, Horizontal Reflection. (least intuitive) 

The style analysis of the total number of patterns drawn, and of the separate frieze 

groups, revealed that the Primary and Tertiary groups were quite similar in the patterns 

they drew, and therefore in the construction methods use to produce them. The Fourth 
Form students have probably been affected by the formal transfom1ation geometry 
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framework they were recently exposed to, and thus their use of transformation geometry 

is not as intuitive as the other age groups. 

Two characteristic features of the Secondary activity (b) patterns was the extensive use of 

half turn and also of tilings. Indeed, many p 112 tilings occurred which have both 

features. 

While several types of pattern construction existed, by far the most common method for 

the Primary children was the base pattern construction. Furthermore, while a variety of 

methods were suggested by individual pattern styles, most styles could have been (and 

probably were) made using the base pattern construction. Hence, the most common way 

that transformation geometry was used intuitively was via the symmetry within the base 

pattern and the translation of the base pattern. Both uses of translation were generally 

understood explicitly by the Primary school students. 

A discussion of the methods used in activity (a) and (b) was made, and a summary table 

made to compare the intuitive use of transformation geometry in each activity implied the 

methods. This can be found in subsection 5.4.4. 

In general, the Primary school students' use of transfonnation geometry in activity (b) 

was more explicit than in acti vity (a). For example, in the base pattern construction, the 

use of symmetry within the base pattern appeared to be more intentional in activity (b) 

than in activity (a). 



6 Resi,lts of 
Description 

the Pattern 
Activity 

In this activity, the subjects were given discrete examples of the seven frieze groups 1 and 

asked to write a description of each pattern in turn. Correspondingly, the results 

presented are chiefly qualitative. The general classification of the phrases is a construction 

of the researcher's based on the trends observed in the subjects' written responses. It 

includes some tenninology from Piaget and Inhelder (1971) and Howard (1982). The 

categories are outlined in subsection 3.4.2. A detailed presentation of the Primary school 

children's descriptions is made to illustrate the classification, since the children surveyed 

provided the most intuitive descriptions of the three age groups (see chapter 1). In a later 

section, interview extracts are given to qualify the findings. This is supplemented by a 

more thematic comparison of the age groups which includes a brief quantitative 

discussion of the commonality of the type of responses given for each frieze group. 

Besides the description analysis, a small survey was conducted in the interviews, which 

required the subjects to compare or match various examples of frieze groups. Tables 

summarising those matches are given and pertinent interview extracts are presented to 

highlight the character of the children's verbal explanations; the explanations are 

discussed using a slightly modified version of the criteria found in Piaget and Inhelder's 

(1971 ) chapter on The Spatial Image and 'Geometrical Intuition'. For further explanation 

of the terminology in this chapter, see subsection 3.5.2 above. 

6.1 Results from the Primary Schools 

For each of the seven frieze groups, the range of responses outlined in subsection 3.4.3 

is illustrated by using the Primary children's explanations as examples. In the following 

list of examples, an asterisk(*) denotes those phrases which occurred several times; two 

asterisks (**) denote a very common expression. A comma (,) between two entries 

indicates that they are associated or similar. 

1 In this chapter, the patterns from activity (c) are reduced to 80% of their original size. 
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6.1.1 plll [PSl] 

Figure 6.1 

Al. Explicit: Differentiated Transformation Geometry 

"triangles going across" * 

"all in the line of a pattern" 

"repeated pattern", "repeating down the 

line" 

A2. Explicit: Undifferentiated Transformation Geometry 

"triangles all the same shape and size" 

Bl. Implicit: Comparison of Whole Pattern with Another Object 

"shark's teeth" "a chain saw blade" 

B2. Implicit: Comparison of Pattern's Parts with Another Object 

"tiger's tooth" 

"dart" 

"a wing of a 'tom-cat"' 

"half an arrow" 

"bird's beak (top)" 

"fins of a surf board" 

"wing of a plane" 

"half a triangle" 

"a wonky ice-cream cone (with no ice­

cream in it)" 

"half rectangles" 

C. Orientation or Direction Judgements 

"upside down triangles" "standing on biggest point" 

"point down" "all facing the same way" 

"right-angle in top corner", "right-angle 

facing upwards" 

"skinny point at bottom, fat end at 

top"** 

D. Positional Judgements 

"spaced out evenly", "spacing 2cm 

apart"* 

"triangles in a row" 

E. Miscellaneous Evaluations 

"right-angle triangles"** "sides not the same length" * 
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"nine in the set" * 

"don't touch the top" [border line] 

"heaps of them in a line" 

"a 3 shape" 

"sides not equal" 

6.1.2. plml [PS3] 

"very pointy" 

"bare", "quite plain" 

"I don't like it ... they look ugly" 

"white" 

"it's not a triangle" 

Figure 6.2 

Al. Explicit: Differentiated Transfonnation Geometry 

"pattern goes across the page" 

"repeat down the line" 

"both sides are metric [symmetric]" 

"a triangle with a reflection" 

"if you folded it they would be 

equivalent" 

A2 . Explicit: Undifferentiated Transformation Geometry 

"two triangles are facing each other" 

"bottom triangle just like the top" 

"repeats itself upside down" 

"parallel triangles" 

Bl. Implicit: Comparison of Whole Pattern with Another Object 

no example 

B2. Implicit: Comparison of Pattern's Parts with Another Object 

"ramp with its reflection in a mirror" 

"arrows", "arrow split down the 

middle", "arrows pointing one way", 

"arrowheads" * 

"draw a backward L shape and join 

diagonal" 

. "ship sails on their sides" 

"hang glider" 

"triangle with line through", "form in the 

shape of normal triangle", "triangle cut 

in two", "together would make an 

equilateral triangle" * 

"paper dart", "dart not joined up", "dart 

folded apart, lying flat" * 

"formed in the shape of a bird's beak" 

"mountains with straight sides and line 

through it" 

"aeroplanes", "paper aeroplanes flying in 

a row", "front of jets", "rocket sharp 

thing", "like a plane's wings", "front of 

a plane's window" * 
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C. Orientation or Direction Judgements 

"longest line points left" "they point left" * 
"one upside down, the ·other the right 

way up", "one facing up, the other 

facing down"** 

"the short sides to the right, two long 

lines in the middle" 

"the right-angles are in the middle" * 

D. Positional Judgements 

"spacing about 2 ems apart" "triangle on top of the other triangle" 

E. Miscellaneous Evaluations 

"right-angle triangle" ** 

"sides not the same length" * 

"The sides just about touch", "the points 

just about touch", "not quite touching" 

6.1.3. pmll [PSS] 

"8 shapes", "16 triangles" 

"white with black outline" 

"a 6 shape" 

"nothing in the middle" 

Figure 6.3 

Al. Explicit: Differentiated Transfonnation Geometry 

"in a straight line across" 

"in a row" 

"both sides are metric [symmetric]" 

"the sides mirror each other" 

"reflection of a triangle" 

A2. Explicit: Undifferentiated Transformation Geometry 

"it has been alternating having a new 

change of direction" 

"they are side by side by side" 

. "straight bits pointing at each other" 

"side to side" 

"triangles facing each other" 

"they are looking opposite each other", 

"two together going opposite ways"* 

Bl. Implicit: Comparison of Whole Pattern with Another Object 

"a wall with a gap" "a monster mouth because it has got lots 

of spikey teeth" 
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B2. Implicit: Comparison of Pattern's Parts witlz Another Object 

"upside down triangle cut in half' "sail upside down with line through it" 

"arrow with no stick in it", "arrowheads 

pointing down" * 

"if turned around looks like darts going 

up" 

"shape of hang glider" 

"bird's beak" 

"put together makes one big triangle" 

"a rocket", "an aeroplane front" * 
"upside down pyramid" 

"upside down ship sails with mast 

yanked out" 

"6½jets" 

"a house if you put it together" 

C. Orientation or Direction Judgements 

"big point pointing to bottom ... short "right-angle in middle at top" 

line on top ... straight line in middle" "upside down triangles" 

"triangle on left has right-angle pointing 

right ... triangle on right has right-angle 

pointing left" 

"two triangles standing on end" 

"pointing down" 

"fat at top, skinny at bottom" 

"direction is south" 

D. Positional Judgement 

"one beside the other" 

E. Miscellaneous Evaluations 

"two nearly joined right-angles" 

"sides just about touch", "points just 

about touch" 

"6 pairs .. . sets of two" * 

6.1.4. plal [PS2] 

"13 triangles" 

"a very good pattern" 

"it is a triangle even though it doesn't 

look like one" 

Figure 6.4 

Al . Explicit: Differentiated Transformation Geometry 

"like a mirror but triangles on the bottom "you have to slide it to match it" 

one are a wee bit before the top one" "it goes across the page" 
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"Ss in a zig-zagging row" 

"If you folded the bottom they would be 

the same but opposite" _ 

"two rows of triangles" 

"repeats the pattern four times" 

A2. Explicit: Undifferentiated Transformation Geometry 

"they go down up down up from the "a pattern with one triangle" 

left", "triangles up and down facing "two right-angle triangles reversing in 

left", "right-angle triangles going tum" 

top,.bottom, top, bottom ... " * 
"every triangle goes diagonally to the 

next", "they are diagonal to one 

another", "one triangle on top and one 

diagonally to that one" * 

"one is up, one is down and they keep 

on going" 

"every second pattern they are the other 

way up" 

"the bottom in a line of right angles 

[triangles] exactly like top line except 

turned upside down" 

"face different ways" 

"they are anglewise from each other" 

"and so on", "and it continues like that 

all the way down the line" 

"two triangles pointing left but they 

aren't positioned in the same place" 

"one is on top, another is upside down 

below it" 

"instead of being opposite they have a 

space in between" 

Bl. Implicit: Comparison of Whole Pattern with Another Object 

"looks like a ladder "could draw an imaginary line in the 

"like a draught board but with triangles" middle" 

"chain-saw blade" 

"checkered" 

"they look like footprints" 

"a path zig-zagging" 

"a motorway of cars" 

B2. Implicit: Comparison of Pattern's Parts with Another Object 

"draw a sail and draw a line through it 

and then slide it" 

"looks like a dart spinning around and 

around" 

"it looks like a face if you put some of it 

together" 

"a man's evil eyes" [drawn] 

"a sad bird" 

"join them to make a triangle" [an arrow 

pointing to adjacent triangles is drawn] 

"skateboard ramp upside down and right 

way up" 

"fins" 

"it looks like bumps" 
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C. Orientation or Direction Judgements 

"short side (or right-angle or point) of second triangle faces right and points 

first triangle faces right and points up 

... short side (or right-angle or point) of 

down"** 

"one on top, one on bottom, and so on" 

D. Positio11al Judgements 

"5 on top, 4 on bottom" 

"spaced 1cm apart"* 

"one in front up the top, one behind 

down the bottom" 

E. Miscellaneous Evaluations 

"different because they aren't pushed 

together", "aren't joined like the other 

ones" 

"halves of triangles in clusters" 

"very uneven" 

6.1.5. pll2 [PS7] 

"these triangles have gone crazy!" 

"I find it hard to describe" 

"fancy" 

"a very effective pattern" 

"they are all over the place" 

Liv/Iv LlvL!vL 
Figure 6.5 

Al . Explicit: Differentiated Transformation Geometry 

"every second one is up the other way 

and pointing the other way" 

"it's repeated" 

A2 . Explicit: Undifferentiated Transformation Geometry 

"triangles going up down up down" "they are point to point, pointing at each 

"they are anglewise" 

"fancy sort of pattern. It goes up down 

. up down" 

"each right angle triangle goes diagonally 

to the next one" 

other" 

"right angles together" 

"facing diagonally" 
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Bl. Implicit: Comparisoll of Wlwle Pattern with Allother Object 

"a spikey line going diagonally" "a zig-zagging row as well but the 

"traffic. five cars pointing left and second triangle is a different way" 

another four pointing right" "tricked us into thinking it is the same as 

"same as pattern four but bottom row is 

facing west" 

pattern four" 

"a u-ia.ngle zig-zag" 

B2. lmplicit: Compariso11 of Pattern's Parts with A11other Object 

"sort of looks like bows or ribbons", "a 

bow going diagonally but it hasn't got 

the knot in the middle", "bow ties going 

across the page" * 

"traffic. five cars pointing left and 

another four pointing right" 

"a dart going loop the loop" 

"it seems like wings" 

"a bird" [a sketch was made using 'first' 

triangle as head, 'second' triangle as 

body] 

"two jets going different ways" 

C. Orie11tatio11 or Direction Judgements 

"orientation of "top triangle" and 

"bottom" triangle using sides, angles or 

vertices pointing or facing up, down, left 

and right** 

"top line faces left, bottom line faces 

right" 

"bottom ones pointing backwards", 

"bottom row is facing west" 

"they alternate" 

"going to left in the air, going to right on 

the ground" 

D. Pvsitiollal .Judgements 

"spacing of a third of a cm" 

E. Miscella11eous Evaluations 

"very hard" "8 ½ right-angle triangles" 

6.1.6. pmm2 [PS12] 

Figure 6.6 
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Al. Explicit: Differentiated Transformation Geometry 

"it goes across the page" 

"it's sort of different from the others ... 

it just repeats across the page" 

"If you join them they will be metric 

[symmetric] again which is like saying 

they are the same on each side." 

"and keeps on going down the line" 

A2. Explicit: Undifferentiated Transformation Geometry 

"all right angles facing" "same as bottom except it is upside 

"four triangles facing outwards" 

"put two on top of each other and put 

two more beside it and so forth" 

down" 

Bl. Implicit: Comparison of Whole Pattern with Another Object 

no example 

B2. Implicit: Comparison of Pattern's Parts with Another Object 

"four triangles formed so they have a 

cross shape in the middle", "the spacing 

makes a cross" * 

"they are in a diamond shape", "41f2 

diamonds", "a sideways diamond" * 

"a diamond split down the middle and 

across", "a diamond cut in fours across 

and up"* 

"a diamond version of the red cross" 

"four right-angle triangles form a kite", 

"a kite with no string on it" 

"top half like a triangle" 

"form a target that would appear on a lot 

of spacie games", "a target off a 

telescopic gun" 

"put together you would get a very 

uneven square" 

"they look like bird's beak back to back" 

"looks like a flag", "NZ flag" 

"if you sit on it you will soon find out 

about it" 

"like windows all in a row but right­

angle triangles instead of squares" 

C. Orientation or Direction Judgements 

"bottom ones have horizontal line facing "two triangles point left, two point right" 

upwards, top line has horizontal line 

facing downwards" 

D. Positional Judgements 

"two triangles on the top and two on the 

bottom" 

"two shapes on one side and two on the 

other" 
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"a gap from top to bottom and gap from 

side to side" 

"they are all in a line" 

"they are all in a row" 

E. Miscellaneous Evaluations 

"16 right-angle triangles" "very very fancy" 

6.1.7. pma2 [PS9] 

Figure 6.7 

Al. Explicit: Differentiated Transformation Geometry 

"and it just repeats itself over and over." 

"through the middle of the whole 

pattern" 

"the bottom has moved over to the right" 

"they repeat down the line" 

A2. Explicit: Undifferentiated Trans/ ormation Geometry 

"one right-angle, one left angle, one "two triangles back to back with flat part 

right angle turned around, one left angle 

turned around." 

"two triangles facing each other and two 

upside down and so on" 

"they are going up and down" 

"two at top and two at the bottom 

pointing opposite ways on a side" 

"the pattern is in two and they are facing 

away from each other" 

facing downwards" 

"same on bottom except they are upside 

down" 

"each segment is diagonal to the next" 

"it is alternately going up and down" 

"in each set, one triangle is pointing left, 

one is pointing right and the short bit is 

always on the inside" 

Bl. Implicit: Comparison of Whole Pattern with Another Object 

"like pattern six but cut in half and slid 

. across", "it's half of pattern six"* 

"a pattern like this 

"like a zig-zag line" 

11 

"it's like a snake", "a snake zig-zagging" 

"a bump going up and down" 

"it's like an old boat" 

"pattern goes up and down like a yo-yo" 

"the up down pattern" 
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B2. Implicit: Comparison of Pattern's Parts with Another Object 

"a hang-glider", "a para-glide" "first like the top of a diamond, the next 

one looks like the bottom of a diamond" 

"spaceships" 

"a broken through the middle version of 

the diamond red cross" 

"a roof and a row boat joined together" 

"ramps joined together and pyramids 

upside down" 

"a bump going up and down" 

"half a game targeter ... " 

"a Chinese helmet" 

"arrowheads alternately going up and 

down" 

"it reminds me of a fighter" 

"jets going opposite ways" 

C. Orientation or Direction Judgements 

"has a pattern one up top and one down "the first triangle ['pair'] is up the top 

the bottom" and the next one is upside down and it is 

"two up, two down, two up, two down, on the bottom" 

one up" "one facing north, one facing south" 

"a slope going up and a slope going 

down" 

D . Positional Judgements 

"two up top in front, then two down 

bottom behind" 

"two triangles together" 

"fancy" 

"too hard" 

6.1.8 Discussion 

E. Miscellaneous Evaluations 

"stupid" 

"funny" 

A few concluding statements can be made. The predominant style of the Primary school 

children's descriptions was the use of an implicit transformation geometry phrase, 

likening the triangles in the base pattern to a real world object. This was very often 

accompanied by referring to the triangles' orientation. The number of triangles, whether 

they touched, and the fact that they were right-angled, were all concerns to the Primary 

school students, the latter probably because of the novelty of a new concept introduced 

from activity (b). Indeed, the descriptive domains employed by the children usually 

combined more than one of the categories (A - E) listed above. However, several students 

only described the orientation or 'direction' of each triangle without reference to the other 
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triangles; that is, they used criteria C (and D or E) phrases but didn't use criteria A or B 

expressions. This does not imply that they did not perceive symmetry in some way; 

perhaps the symmetry wasn't the prominent feature of the patterns for some children; 

perhaps symmetry was difficult for some children to communicate. 

Secondly, explicit descriptions of transformations were generally confined to translations 

(e.g., "repeating") and reflections (e.g., "it you fold it over it would be the same"). Glide 

reflection was not often spelt out explicitly but some descriptions of p 1 a 1 included 

phrases such as "you have to slide it to match it" suggesting that an intuitive composition 

of horizontal reflection and translation was present. Rotations were barely mentioned at 

all , even in the descriptions of the p 112 pattern. 

The third point is that the expression "pattern" often referred to the base pattern and not 

the strip as a whole. Many explanations described only one base pattern, not even 

bothering to mention the repetition , as if the translation of the design was assumed or a 

redundant piece of information. Furthermore, a significant number of the children's 

descriptions indicated that the 'whole pattern' described was perceived as finite, confined 

to set of points drawn on the page (e.g., pmm2 [PS 12] "4½ diamonds"). This 

conclusion is supported by the information from the interviews as well. It is doubtful if 

many of the standard three and four students surveyed did imagine the frieze patterns 

extending beyond the confines of the page. 

Some variation of responses can be detected between the seven frieze patterns. For 

example, comparing the base pattern to another object (implicit) was not common for 

pl 11 and plal, whereas it was for the other five frieze groups, particularly pmm2. On 

the other hand, the explicit description of transformations was most common for p 111, 

focussing on the translation of a triangle. For further consideration of similar trends, see 

the tables in the following section. 

6.2 Age Group Comparison 

Having sorted and identified the character of the children's description of the discrete 

frieze patterns shown above (figs. 6.1 - 6.6) , we now proceed by comparing the 

differences between the Primary, Secondary and Tertiary groups. The prime reason for 

such a comparison is to consider the evolution of transformation geometry concepts, 
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bearing in mind the cognitive development of each age group and the degree of exposure 

to the formal transformation geometry framework which each age group has had. As 

before, we are not interested so much in the correctness of the descriptions as the type of 

criterion used. 

In this section a further refinement of category E is added (see subsection 3.4.3), and 

tables summarizing the popularity of each criteria for the respective frieze groups are 

given. The percentages given do not sum to 100% because some descriptions included 

more than one criteria. 

Al Phrases of Explicit Differentiated Transformation Geometry 

A2 Phrases of Explicit Undifferentiated Transformation Geometry 

B 1 Comparison of Whole Pattern to Another Object 

B2 Comparison of Pattern Parts to Another Object 

C Orientation or Direction Judgement 

D Position Judgement 

El Topology Judgement (e.g., "not touching") 

E2 Triangle Properties (e.g., "right-angled", "sides different lengths") 

E3 Personal Comments (e.g., "it's too hard", "very fancy") 

Table 6.1. (% of Primary Students Using Each Category) 

Al A2 Bl B2 C D El E2 

pll l 22 14 3 10 48 6 4 67 

plml 12 34 0 58 38 11 35 29 

pmll 9 30 4 59 42 8 25 24 

plal 8 29 13 19 32 15 24 25 

p112 1 24 27 41 47 11 16 20 

pmm2 11 9 0 78 19 6 25 34 

pma2 6 33 13 56 27 13 32 32 

Av.% 10 20 8 46 36 10 23 33 

E3 

6 

0 

3 

14 

9 

8 

5 

6 

Overall, the most popular criteria for description was the comparison of pattern parts to 

another object, that is, implicit transformation geometry. Besides p 111, only one in ten 

students included explicit differentiated transformation geometry in their descriptions. 
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Table 6.2. (% of Secondary Students Using Each Category) 

Al A2 Bl B2 C D El E2 E3 

pll l 38 19 2 5 93 53 34 71 8 

plml 44 48 2 44 52 40 27 35 1 

pmll 45 35 3 38 53 31 29 22 2 

plal 35 31 10 16 62 48 26 34 3 

pll2 35 22 14 18 57 27 19 21 1 

pmm2 34 36 1 62 18 22 44 26 2 

pma2 40 37 11 42 36 25 23 29 1 

Av.% 39 33 6 32 41 35 29 34 3 

The Fourth Form students tended to describe the patterns in terms of explicit 

transformation geometry more frequently than the Primary students did, using terms such 

as "repeat", "re-occurring", "mirror image", and "reflect" and explaining the congruence 

of the triangles. Also, responses showed less emphasis on comparing the patterns to real 

world objects; the Secondary subjects seemed more concerned with the triangle's 

orientation and non-symmetry properties such as comparing the sizes of its angles, side 

lengths and so on. In short, a wider range of criteria was used. However, the comparison 

of the whole pattern to another object was not as common as for the Primary classes, 

especially in descriptions of p 112. 

Table 6.3. (% of Tertiary Students Using Each Category) 

Al A2 Bl B2 C D El E2 E3 

pll l 52 25 0 14 80 43 45 77 6 

plml 69 35 1 48 52 45 52 42 6 

pmll 69 40 6 42 58 23 40 37 1 

plal 55 23 15 5 65 48 46 45 3 

p112 46 29 9 12 60 34 23 29 0 

pmm2 66 46 0 71 25 29 52 28 0 

pma2 65 43 11 28 51 37 42 28 3 

Av.% 50 34 6 31 56 37 43 41 3 

The College of Education students tended to use explicit differentiated transformation 

phrases and orientation judgements and they employed a wider range of criteria in their 

descriptions (on average) than the other two groups. Apart from pmm2, over half the 

Tertiary subjects included an orientation or direction judgement in their descriptions. 
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Overall, several ideas can be drawn from these results. Firstly, as the age of the subjects 

increased, a wider use of the range of criteria occurred. Secondly, the Primary children 

appeared to employ a metaphor style of description, likening a pattern pan to a real world 

object. In contrast, it was usual for the Secondary and Tertiary groups to make orientation 

judgements or explicit descriptions of transformations; the use of implicit phrases was 

low for both groups. Furthennore, the use of explicit transformation was more often 

undifferentiated at the Primary level, while it was more commonly differentiated at the 

Tertiary level; the proportion of Secondary students using undifferentiated and 

differentiated descriptions was roughly equal. 

Thirdly, the most common explicit transformation referred to was translation, followed 

by reflection. Rotation concepts were not used a great deal by any of the groups. For 

example, in the description of p 112, Primary groups didn't use explicit criteria at all, and 

the Secondary and Tertiary students were just as likely to describe a half-turn in terms of 

a composition of two (perpendicular) reflections. 

The possibility of the patterns being commonly perceived by symmetries of the whole 

seems remote, especially given the low percentage of students in all age groups who 

compared the 'whole' pattern to another object. An even stronger conclusion is that all 

three groups clearly showed a perception of the patterns as finite, indicated by the 

enumeration of triangles, or using expressions such as "repeat 41h times". The only 

obvious indications of an 'infinite pattern' conception came from a couple of students in 

each age group (e.g., "it keeps repeating forever"). 

The p 112 [PS7] pattern was often compared to p la 1 [PS2] which, if not considered, 

would reduce the number of comparisons of this pattern considerably. Therefore, pma2 

[PS9] was probably the pattern most commonly compared as a 'whole' to other real 

world objects. This observation corresponds nicely with the results of the continuous 

frieze pattern constructions described as "zig-zags" from chapter 4. 

It is also interesting to note that the Primary school children were more likely to make a 

personal comment about the patterns than the other age groups, or tell a story about it. 

For instance, " ... come over here, sit down, and I will tell you all about it" or " ... if you 

sit on it you will know all about it" or even "This is an evil man's eyes. He lives in a cave 

by the sea and eats crabs ... ". In contrast, the older subjects appeared to be more 

concerned with being precise. 
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In some respects, a direct parallel to Piaget's theory of cognitive development can be 

made. Children of 9 or 10 years old are usually at the concrete operations stage; a few 

may be nearing the beginning of the formal operations stage. It seems natural that they 

would compare a pattern's parts with real world objects (or other pattern parts), as 

Wadsworth (1979) explained: 

"while the child clearly evolves logical operations, these operations (reversibility, classification, 

etc.) are only useful to him [or her] in solving problems involving concrete (real observable) 

objects and events" (p 97) 

The period of formal operations occurs roughly between the years of 11 and 15, an age 

range in which Fourth Form students generally lie. Wadsworth maintained that during 

this stage the student is better able to "organise data, reason scientifically and generate 

hypothesis". It comes as little surprise then, that we observe a reduction in the use of 

concrete comparisons and an increase in the use of explicit transformations, a criteria 

which Piaget and Inhelder ( 1971) rate as "the most advanced type of argument." 

The main difference between the Secondary and Tertiary students was a slight increase in 

the use of explicit transformations and a noticeable increase in the number of different 

criteria used to describe the patterns. This also concurs with Piaget's theory of cognitive 

development because, according to Wadsworth, the structure of one's reasoning does not 

improve after the period of formal operations, but rather: 

"A major difference between adult and adolescent reasoning capabilities is the sheer number of 

shemata, or structures .... the typical adult has more ... 'content' to which he [or she] can apply 

his [or her] reasoning powers than does the typical adolescent." (p 118) 

Lastly, from the viewpoint of a perceptual framework, such as that sketched by Foster 

(1984), the description of global features increased from the Primary to the Tertiary 

groups. Other perceptual characteristics such as local features and local spatial 

relationships were common amongst all three groups. 

6.3 Interviews - Case Studies 

In this section we examine the meaning or intention of some of the children's written 

expressions. The main reason for doing this is to see if any intuitive transformation 

geometry was present in the verbal explanations where it was not in the written 
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explanations. Next we consider the similarities perceived between the seven (discrete) 

frieze groups of activity (c) and also explore the relative difficulty of matching other 

discrete or filamentary patterns with them. The criteria these ten subjects used to match 

various patterns are also discussed in relation to transfom1ation geometry. 

6.3.1 Explanations of Intentions and Further Perceptions 

The extracts here are designed to give the flavour of the children's own understandings of 

their written descriptions. As in section 6.1, we consider each of the frieze patterns in 

turn. 

pl 11 [PSI] 

Figure 6.8 

I: (Reads) "It looks like fins of a surfboard". What is "it"? 

M: One of them [a right angle-triangle]. 

I: And you've said "it looks like a chain-saw blade"? 

M: That's all of them. They look like a chain-saw blade ... the bottom. 

Mark commented that this pattern was easy because "it looked like lots of things." This 

was typical of his written descriptions in general; his explanations were generally implicit, 

comparing either the whole pattern or its parts to another object. It was only when 

questioned that he used more explicit phrases. See pma2 below for another example. 

Toni's explanation (not shown) was different. She simply described the scalene 

properties of one triangle and the fact that it had an interior right-angle. She didn't bother 

explaining the translation because it was obvious to her. Once she had described the base 

pattern, she deemed her written explanation sufficient. From Toni's other descriptions it 

seems that she considered the base pattern to be 'the pattern'. Many other children used 
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similar written descriptions to Toni, suggesting that a common perception of a pattern 

was 'the thing that repeats' (i.e., a motif) in contrast to the result of the repetition. 

The discovery of 'undifferentiated' orientations (and by implication, transformations) was 

made through the following extract. Amy had written "an upside down L" and was asked 

to draw this, which she did, matching the orientation of the triangle in pattern one (p 111 ). 

The researcher then drew an alternative 'up-side down' L (reflecting hers). 

A: Oh? ... oh yeah [as if she hadn't thought of this but recognised it as upside 

down as well]. 

I: So what do you mean by upside down? Can you explain a bit more about 

it? 

A: Well, upside down and turned around. 

I: Okay so are you turning it around like this perhaps (turns page 180°), or ... 

A:Mmm? 

I: Or are you flipping it over or something else perhaps? 

I: Mrnmrn ... you need to turn it over to put it backwards [horizontal reflection] ... 

then you need to flip it over [vertical reflection] ... or the other way around. 

While Amy's earlier explanation (underlined) sounded like rotation, in fact she was 

explaining the composition of two reflections in fairly explicit fashion. "Upside down" 

can have at least two specific meanings (as Amy's recognition indicated) and a broad 

meaning (as her surprise indicated). A highly complex use of explicit, differentiated 

transformations has been revealed in the interview where her written description had only 

appeared to be an orientation judgement. 

plml [PSJJ 

Figure 6.9 
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I: ... and then you said "it mirrors itself'. Now what does that mean? 

M: It halves itself down there ... this way [points between the two triangles on the 

far left of the page] 

I: So do you mean each one of these ... each 'pair' ... [pointing at the two 

triangles on the far left of the page] or the whole pattern [uses arm and 'folds' it 

over to indicate the reflection of a row]. 

M: Um ... oh ... that one mirrors that one [first 'pair'], that one mirrors that one 

[second 'pair'] ... and so on ... so they all mirror the same way. 

The horizontal reflection symmetry detected by Mary was in each base pattern, and not 

the pattern as a whole. The translation seems to have been fairly explicit also by the 

phrase "and so on". In another pattern description, (plal), she used the phrase "and it 

keeps on going". This suggests that she may have imagined the pattern extending beyond 

the confines of the page, but further questioning revealed that this was not so. 

pml 1 [PSS] 

Figure 6.10 

Alice wrote "the long straight bits are pointing at each other". She explained: 

A: Those ones ther~ [triangles in first 'pair'] are facing each other ... like a mirror. 

Alice's written comment that "All of it looks like a bird's beak" referred to the base 

. pattern since she explained by pointing to each 'pair', labelling them "bird's beak, bird's 

beak, bird's beak, ... " Her description, classified as undifferentiated transformation 

(relative direction), when more fully explained intended to convey a vertical reflection. 
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plal [PS2] 

Figure 6.11 

I: Why is it "fancy". 

C: Well .. this is more of a ... more of a harder one to do ... 

I: Right. 

C: 'Cause you go up down up down up down (enthusiastically). 

Some alternating property has attracted Carla to this pattern. It is still difficult to tell if the 

expression "go up down ... " implies a perception of the figures changing direction or an 

undifferentiated transformation (relative orientation). The word "fancy" seems to mean 

that the pattern was complex, making it hard to draw or describe. 

p112 [PS7] 

Figure 6.12 

I: What do you think is repeating in this pattern? 

R: Well they're all repeating each other. That one's repeating that one ... and that 

one's repeating that one ... and these ones are the same ... up the top ... they're 

repeating. 
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I: Oh ... so you think that the ones down the bottom are repeating and the ones up 

the top are repeating? 

R: Yeah ... but those ones [triangles in bottom row] aren't repeating the top ones. 

This 'rows' perception was common in the interviews and the written descriptions. It 

seems that half-turn was not often used to explain this pattern. Instead, the translation of 

triangles in each row was explicit. It is almost as though two separate patterns were being 

described (which is why the corresponding constructions are classified as the 

superposition of rows). 

pmm2 [PS12] 

Figure 6.13 

I: Anything else you can tell me about the pattern? 

R: It looks like the sign off the "Dukes of Hazard '"s car ... um ... it looks like 

bunches of triangles bunched together. 

I: How are they bunched together? 

R: Equally apart ... all the same size ... and they repeat each other. That's all I can 

think of. 

I: What if you look at it this way? (turns the pattern 900) 

R: Looks like the crafts off "Star Wars." 

Richard's comparisons did not seem to have any explicit transformations in them, apart 

from translation. This was not surprising given the high percentage of students who 

wrote implicit transformation geometry descriptions. 
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pma2 [PS9] 

Figure 6.14 

To illustrate the fact that the same expressions can be used to mean two different things, 

consider the phrase "turned around". For Carla it probably meant a half-turn. In her 

description she wrote "one right-anglel , one left angle2 (down), one right angle3 turned 

around, one left angle4 turned around." 

Figure 6.15 

After she explained that the joining of the first two triangles (1 & 2) would make another 

triangle, she turned the page and showed how the pair would then "go to those ones" (3 

& 4). This apparent intuitive half-turn was checked. The page was returned to its original 

orientation, and Carla was asked to explain it again without turning the page. Again she 

used the expres~ion "turned around" and the 'mapping' was consistent with the previous 

explanation. 

On the other hand, Mark meant a flip (as a component of a glide reflection). 

I: Is that one the same as that one? [comparing first 'pair' with second 'pair'] 

M: Oh ... yes ... but if that one there was turned around ... it'd be the same as that 

one. 

I: Show me what "turned around" means. 

M: [Marks turns his hand over] You know ... flipped over. 
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Among other things, Mark has recognised congruence where he had not written it before. 

Both children have used explicit differentiated transformations in their oral explanations. 

In Mark's case, his wri_tten description had been implicit. In Carla's case, her written 

expression was undifferentiated. Carla response was particularly surprising given the 

rarity of any explicit half-tum in the wrinen explanations. 

Some Concluding Remarks 

The use of explicit transformations sometimes became more obvious in discussion than in 

the written descriptions. It may well be that an intuitive sense of symmetry was a 

component of some of the Primary children's perception, but other aspects of the patterns 

strike them as more important to write down. 

It also seems clear that once a translation unit has been described, it was seen as a 

sufficient description by most subjects interviewed. Indeed, the 'pattern' is the base 

pattern according to some subjects; the repetition was simply obvious and not worth 

mentioning. In this case, translation was intuitive, even though it wasn't explicitly stated. 

Related to this point, and equally lucid, is the conclusion that the children's perception of 

the patterns was fi nite, limited to the design on the page , and no more. For instance, even 

when a description included a comparison of the 'whole' to another object, it often had 

the sense of afinite 'whole'. This may well be the case for many of the students in the 

older age groups, but this consideration is not pursued in this thesis. 

Let us reiterate a familiar theme: A feature of geometric intuition is that a child may have 

used or recognised a transformation, but not in a way that distinguished it from another 

transformation. Such examples are termed undifferentiated transformations as noted 

above. It appears, from the interviews, that the most common example of this phenomena 

was the use of the expression "turn upside down" to denote the result of a half-turn, glide 

or horizontal reflection alike. There are mathematical as well as psychological reasons for 

this occurring, as explained in subsection 4.3.4. 

In some case studies, the base pattern of the pmm2 pattern was discussed. Interviewing 

revealed that a child who described the relationship of the lower triangle to the upper 

figure as "turn it upside down" often made no distinction between reflection or rotation by 

this expression. (e.g., Richard said: it's the same thing!") And indeed, this pattern has 

both horizontal reflection and half-tum symmetries, whose effects are identical (in this 

case). Lesh's (1976) comment that children may focus on the end product and not the 

'process' of a transformation appears to be supported by this observation. 
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However, often the same child still thought in terms of 'upside down' when the 

transfonned figure itself had no reflection symmetry. It then becomes difficult to know 

whether the lack of transformation distinction was due to the nature of the object (i.e., an 

orientation judgement) or. a faulty generalisation from the example sketched in the 

previous paragraph. It may be that half-turns and horizontal or glide reflections are 

grouped together in the child's cognitive structures under the heading of 'turn upside 

down'. Given the large proportion of mono-orientated objects in a child's world which 

have vertical reflection symmetry in them (Howard, 1982), it would not be surprising if 

this generalisation has been made by some children. 

6.3.2. Matching Frieze Patterns 

Tables of matches are given below. We also examine some of the criteria used to match 

frieze patterns, as described in chapter 3. Obviously, some of the children's responses 

may or may not be correct with respect to symmetry groups, but as before, the criteria, 

rather than the correctness of perception, are what concern us here. All of the matching 

criteria described in chapter 3 occurred in the interviews, but in order to preserve brevity 

not all appear in the extracts below. Instead, a few 'typical' responses are displayed. 

Compariso11 of tlle Seve,i Discrete Frieze Pattern Types 

In this matching activity, the students were given 7 cards with a different frieze group on 

each card (see appendix C 1). They were asked to indicate any pair of patterns which 

seemed similar to them and to try to explain the similarity if they could. The results in 

Table 6.4 give the number of affirmative responses for each possible match. Comments 

and interview extracts follow. 

Table 6.4 

pll l plml pml l plal pl 12 pmm2 pma2 

pill NIA 0 3 () () () 0 

plml NIA 10 I () 2 () 

pml 1 NIA () () 0 1 

plal NIA 10 () 2 

pl12 NIA 0 0 

pmm2 NIA 10 

pma2 NIA 
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The three matches common to all ten children interviewed were plml [PS3] with pml 1 

[PSS], plal [PS2] with p112 [PS7] and pmm2 [PS12] with pma2 [PS9]. One or two 

typical interview extracts are given for each. 

1. plml [PS3] and pml 1 [PSS] 

I: So you think patterns 2 and 3 look quite similar? 

M:Yep. 

I: And why's that? 

M: Those two there [first pair of triangles on left of pattern 2] are pointing that 

way, and those [first pair of triangles on left of pattern 3] are pointing downwards 

I: Uh-huh. 

M: But they still mirror each other. 

Mary has recognised the reflection within a base pattern of triangles for each pattern (E), 

as did several of the other children Note also that the symmetry of the whole was not 

mentioned. It seems that the pattern was perceived as the translation unit - the base 

pattern. A direction or orientation judgement (D 1) has been used to distinguish the 

patterns . Similar responses, combining relative orientation evaluations (D2) or 

comparisons with another object (e.g., an arrowhead) and orientation judgements, were 

common components of this match. As noted above, several students noted the similarity 

between the two patterns in their written descriptions using the same criteria. 

2. plal [PS2] and pl 12 [PS7] 

(i) M: Um ... all of those comers are pointing that way ... 

I: Uh-huh. 

M: But ... um .. . this one [bottom row of pattern 5]. .. those comers there are 

pointing to each other ... the ones above them. 
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(ii) I: Okay, why did you choose those two? 

T: Because they've both got two rows of right-angle triangles ... and that ... the 

top one's exactly the same but the only change is the bottom line ... 'cause the 

slope in the bottom line is sloping down in 5 ... and up ... it's sloping down in 4 

but in the other direction. 

These were very common responses, often stated on paper as well. When comparing the 

patterns, the children tended to perceive them as two rows or as a series of base patterns, 

describing each with positional (2), orientation judgements, or evaluations based on 

relative direction. Very little synonymous language to transfomrntion geometry was used. 

3. pmm2 [PS 12] and prna2 [PS9] 

(i) M: Well they're the same up the top and then they're the same down the bottom. 

(ii) Al: 'Cause if you put that one onto that one ... it will sort of look similar to that 

one ... 'cause ... if you moved that over there it would be like that one. 

Alice was saying that by sliding the top row of pattern 6 by an appropriate amount it will 

look like pattern 7, or alternatively, by sliding the bottom row of pattern 7 by an 

appropriate amount it will look like pattern 6. Mary's comparison was less dynamic. She 

perceived a similarity by the regular deletion of the appropriate triangles in pattern 6. In 

this match, the criteria she uses for similarity is probably positional only (B3), while 

Alice's response actually described a translation (E) of a row. But in neither case do they 

verbalise any perceived common reflections, glide reflections or rotations. This was also 

true of those students who noted the similarity of these two patterns on the written 

survey. 

4. pl 11 lPSlJ with pml 1 lPSSJ 

I: Okay ... why do you think they're similar? 

T: Um ... because if you get pattern 1 here and ... put that ... that one there is 

exactly the same to that one there ... this is just pattern 1 with a reverse 

triangle beside it ... it's like a mirror image. 
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This time a symmetry group mismatch has been made using gaps (C2), relative 

orientation (D2), and quite clearly, symmetry (E). 

Comparison of Two Different Sets of Discrete Pattern Types 

The original set of discrete (green) patterns were used, and the new set for comparison 

were on red cards (see appendix C2) . Each symmetry group is correspondingly prefixed 

by G (green) or R (red) 

Table 6.5 

Gpll 1 Gplml Gpmll Gplal Gpl 12 Gpmm2 Gpma2 

Rpl 11 10 0 0 0 0 0 0 

Rplml 0 10 0 1 0 0 0 

Rpmll 0 0 8 0 1 0 2 

Rplal 0 0 0 10 7 0 1 

Rpl 12 0 0 1 2 8 0 0 

Rpmrn2 0 0 0 0 0 10 0 

Rpma2 0 0 0 0 0 0 10 

The predominant technique employed for the common matches , namely the 

corresponding frieze groups and Rp 1 al with Gp 112, was to note the 'congruence' of the 

motifs used in the red and green patterns, viz., the "F" and the triangle. For example, 

Mark explained how to change an "F" into a triangle: "if you just take that one away and 

then draw a line to the comers it would make a right-angle [triangle]. " Usually some 

combination of evaluations based on orientation or direction judgments, 1-1 

correspondence, or proximity was used to complete the intuitive match. 

Consider Kate's match of Rplal with Gplal. She held Rplal in her hand and tried to 

find a match. Initially she chose Gp 112, a common 'mismatch' of symmetry groups. 

K: This one [p 112] ... um cause of the way it's arranged ... the way it's arranged 

looks similar. 

I: Uh-huh .... Does it look similar to anything else, or not really? 

K: Now it sort of looks similar to pattern 4 [plal] because you've turned it 

around. 
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I: Okay, so if you could turn it any way you want, which of those two patterns 

does it look most like? 

K: Probably this one. 

I: Probably "4". Why? 

K: Well ... um ... for one reason this one here's sort of chopped off at the back, 

that one isn't ... and 'cause of the way their facing at the moment ... they're sort 

of spaced out the same ... I think that's about all actually. 

Kate has clearly not based her match on transfonnations or symmetry but a combination 

of direction (D 1), spacing (C2) and extremities (B 1 ). Her initial 'mismatch' is mainly due 

to criteria C; evaluations based on the general shape or composition of parts. On this 

basis, it is not surprising that Kate, like all the other interviewees, found the matching 

with the filamentary patterns more difficult. The use of the phrase "this one's sort of 

chopped off at the back" to explain her matching also strongly suggests that she has not 

intuited the pattern extending beyond the confines of the page (let alone an infinite strip). 

This is not say that all matches were made without an intuitive use of transformation 

geometry. Kate recognised the vertical reflection in Gpm 11 and matched Bpm 11 to it 

using that criteria. 

K: Well ... they're back to back ... like a mirror (points to first 'pair' of triangles 

in Gpmll) 

I: Uh-huh. 

K: And so are they (points to first pair of "F"'s in Gpml 1). 

I: And what about if I turn this one this way? (turns Bpml 1 180°) 

K: No, because now they're upside down. 

While Kate has clearly used an explicit transformation criteria for her match, the 

orientation of the individual shapes still appears to have been a more dominant feature of 

her perception of the patterns. However, until Kate was asked, she hadn't mentioned the 
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orientation of the base patterns. This indicates that some perceptions were probably not 

verbalised because they seemed obvious to the subject. 

Comparison of a Set of Discrete Pattem Types with a Set of Filamentary Patterns 

The set of discrete pattern types .u·e the originals, prefixed as before by G (green); the 

filamentary patterns are prefixed by B (beige). See appendix C3 for the list of 'beige' 

patterns. 

Table 6.6 

Gpll l Gplml Gpml l Gplal Gpl 12 Gpmm2 Gpma2 

Bpl 11 4 2 1 2 2 2 2 

Bplml () 9 () () () l 1 

Bpmll 2 2 7 1 () 2 3 

Bplal () () 0 7 3 () 1 

Bpl 12 s 0 () 5 6 () 0 

Bprnrn2 0 1 1 0 0 9 0 

Bpma2 0 0 () 2 2 1 8 

As before, some of the common matches will be illustrated with interview extracts and 

complemented with brief discussion. It is clear from comparing tables 6.5 aml 6 .6 that 

frieze group mismatches were more common in tbe filamentary/discrete comparison 

activity (44) than in the discrete/discrete comparison activity (15). From the interviews 

above it seems that the use of transformation criteria was not usually dominant in the 

discrete/discrete case, and this conclusion is amplified by the results of the 

filamentary/discrete matching activity where several of the other factors (B, C, and D) 

such as 'poi ntincss' , were deliberately reduced. Many subjects still tried to use these 

'eliminated' criteria and, correspondingly, the children reported having more difficulty 

and took far longer to decide on the matches than for the previous activity. 

The general style of matches for this activity was to try to find corresponding 'lines' or 

'points' with the correct orientation. The children often imagined parts of the filaments as 

triangles to do this. 
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1. Bpml l with Gpml 1 

I: Okay, does it look like any others? 

Ad: It could be pattern 3. 

I: It could be pattern 3? 

Ad: Yep ... 'cause they're all pointing downwards. 

I: How about pattern four? 

Ad: No. 

I: Any others? 

Ad: It could be the bottom of pattern 6. 

I: Yeah. 

Ad: Or the bottom of pattern 7. 

I: So if you had to choose, which one would you pick? 

Ad: It looks most like pattern 3 .. . I think ... when it's upside down. 

The 'points' were still used to make a match. Also, the orientation (non-relative) was 

important to Aden. He concentrated on the triangular spaces in pattern 3 as oppose to the 

the actual shapes (C2). 

2. Bpmm2 with Gpmm2 

I: You did that quite quickly. You must be confident. Why do you think they're 

similar? 

R: Oh ... well ... because you can imagine those four fitting into there. 
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I: Uh-huh ... any other reason? 

R: Well they're sort of grouped together like a diamond ... and ... um ... well ... 

those are ... a bit like a diamond. 

The matching criteria in this case is, in Piaget's and Inhelder's terms, based on the 

general shape or composition of the parts; in particular, an evaluation based on the shape 

or global area. In terms of the description criteria from section 6.1 and 6.2, Richard has 

used an implicit form of transformation geometry by comparing a pattern part to another 

real world object. 

The two most common 'mismatches' were Bp112 with Gplll and with Gplal. In the 

first case, the 'triangles' formed by the filament were seen along the top of the strip but 

not the bottom. They were then matched with pattern one's triangles because they were 

'single' triangles. "In the other patterns they have twos" said Rachel. Sometimes the 

'wrong' orientation was mentioned. For instance, Kate noted that "They're not the quite 

the right way round though." In the second case, the common 'alternating' property, that 

is ., the 'up-downness' of both patterns was the dominating feature. Again, 'points' were 

often used. This mismatch was not surprising given the number of students who thought 

Gplal and Gpl 12 looked very similar. (Recall the student who wrote "this one is trying 

to trick us into thinking they're the same). 

Bp 111 was often matched with a different 'Green' symmetry group. The interviewees 

often noted a similarity to part of another pattern. One of the mitigating reasons for this 

phenomena appears to have been the orientation of the 'potential triangles' in the 

filamentary pattern B p 111. Each 'triangle' is 90° anti-clockwise to the orientation of the 

triangles in Gp 111. Hence they " face the wrong way" or "are around a different way." 

All the 'Green' patterns have subsets with triangles in the same orientation (except 

Gpml 1, which also has only one match). 

A Final Comment 

In most children's explanations of their matches, evidence of transformation geometry 

appeared to be lacking. This was most noticeable with the discrete/filamentary exercise. 

Perhaps a conjecture can be made: If (a) transformations or symmetries are detected more 

easily between proximate or connected objects as articles in Lesh and Mierkiewicz's 
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(1978) monograph indica·ted, and (b) the students seem to consider 'the pattern' as the 

base pattern as demonstrated in several ways above, then it seems likely that children 

making matches with filamentary patterns will not yield explanations with a strong 

transformation geometry component. 

6.4 Summary 

6.4.1 Primary Survey Results 

The use of description criteria varied between the frieze groups. Explicit transformations 

were not common for any of these groups; roughly one in five children used phrases 

indicating translation; reflection was mentioned even less than this. Rotation and glide 

reflection were rare. For Primary students, it seems that using transformations to make 

patterns is more intuitive than describing patterns in transformation 'language'. 

There were many clear signs that the children perceived the base pattern as 'the pattern', 

and that the design presented was restricted to the set of figures and lines actually drawn 

on the page. 

6.4.2 Age Group Survey Comparison 

Primary students commonly used implicit transformation geometry by comparing pattern 

parts with real world objects. The proportion of Secondary students using implicit 

symmetry was smaller, whilst a clear increase in explicit transformation geometry 

occurred. The proportion of Tertiary students using implicit transformation geometry was 

the same for the Secondary students, with slight increases in explicit transformations and 

a few other categories. In short, as the age of the subjects increased, the description of 

transformations became more explicit up to formal operations stage, after which a greater 

scope of descriptions occurred. The use of implicit transformation geometry criteria by 

comparing the 'whole' pattern was not particularly common for any age group. 

6.4.3 Interview 

The oral explanations the children gave of their written descriptions often brought out 

more explicit transformation geometry phrases. The children appeared to have seen more 

than they recorded on paper which, given their writing skills, does not seem surprising. 
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A common description of the pattern was to describe the base pattern only, often using a 

comparison to a real world object or another pattern's translation unit. The translation of 

the base pattern, according to the interview material, is so obvious to the students that 

they don't mention it. 

The interviews also suggested that the students conceived the designs displayed as 

precisely those points etched on the page (as opposed to an infinite extension in the 

manner of a frieze group). This was consistent with the results of the written 

descriptions. 

Matching Activities 

From the interview results, it seems clear that transformation geometry was not 

extensively verbalised as a criteria for matching frieze patterns . Other characteristics such 

as position, orientation and direction of points and lines were dominant in the descriptive 

domains of the Primary subjects interviewed. One of the strongest pieces of evidence of 

this was the lack of recognition of a match when a 'Red' frieze group was orientated 18QO 

to a 'direct match' so that a 1-1 correspondence of points and lines and their re spec ti ve 

positions and directions didn't exist. For example, "no it's not the same ... but it's like 

pattern 2 if you tum it up the other way" (Rp lm 1 and Gp 1ml). A few examples occurred 

with transformation geometry, all with reflection, and of these most were vertical 

reflection. Secondly, when some of these factors were eliminated in the 

filamentary/discrete activity, the children showed both qualitative and quantitative signs of 

difficulty. If transformation relationships or symmetry had been the only salient matching 

criteria, this difference would probably not have been as pronounced. 



7 Conclusions 

"Transformations are like putting your shoes and socks on: it makes a 

difference the order which you do it in." (Anonymous) 

7.1 A Review 

7.1.1 An Introductory Note 

The task of this thesis has been to identify and explore the character of intuitive 

transformation geometry concepts in the construction or perception of frieze patterns 

(bands with translation symmetry in one direction only). In part, the motivation to explore 

this topic arose from the particular relevance that transformation geometry has to New 

Zealand: kowhaiwhai (Maori rafter patterns) are examples of frieze patterns and are 

suggested for use at the Form 3 and 4 levels by the New Zealand Syllabus for Schools 

booklet (1987) and by the more recent draft syllabus. 

The importance of learning geometry and, in particular, the value of the transformation 

approach was highlighted by the literature review in chapter 2. The education literature 

suggested that particular transformations seem to be learnt in a certain order (e.g., 

translation, then reflection, then rotation) , although the character of the conceptualization 

of these transformations was still unknown. From the perceptual psychology literature it 

was found that vertical reflection symmetry is a salient feature of the perceptual process in 

many cases. The perception of figures with a single axis of symmetry is affected by a 

number of variables such as spacing, figure complexity and direction of the mirror line. 

Translation, or repetition, is also detected quite easily, although it is often described in 

asymmetric terms by psychologists. Unfortunately, it appears that little is known about 

the perception of rotation or glide reflection symmetries. Furthermore, the amount of 

research on the perception (or use) of transformations or symmetry in patterns is very 

small indeed, providing additional impetus and motivation for this thesis. 
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The General Approach 

The approach to this present study has been two-pronged, using both survey and case­

study research methods with Standard 3 and 4 children. For comparison, surveys were 

also conducted with Secondary and Tertiary students. Respectively, these three age 

groups correspond to the times before, during and after exposure to formal 

transformation geometry concepts. 

The construction activities were of two types: unrestricted (in 

which the subject could draw any frieze pattern they wished) and restricted (in which the 

subject could only use right-angled scalene triangles to make their frieze patterns with). In 

the interviews, the intentions and the order of these constructions were explored. The 

perception activity required the subjects to describe seven different patterns, each pattern 

having a different set of symmetries to the others. The interviews investigated any further 

unwritten understandings of the patterns which the children had, and clarifications of the 

meaning of phrases were sought. In addition , the interviewed subjects performed a 

matching task, and the criteria for matching was described. 

7.1.2 Results of the Unrestricted Pattern Construction Activity 

Survey 

An ordering of the (relative 'intuitive-ness' of the) seven frieze groups in the unrestricted 

pattern construction was made from the results of four 'measures'. This list is shown 

below for the Primary and Secondary subjects (1 indicates a popular and frequently 

drawn pattern type; 6 indicates an uncommon and rare pattern type). 

Table 7 .1 

Primary Secondary 

1 pll 1, pml 1 pl 11, pmll 

2 pmm2 pmm2, pma2 

3 pma2 -

4 pl 12 pl 12 

5 plml plml 

6 . plal plal 
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By comparing the numeracy and popularity of the Primary frieze patterns with translation 

and one other symmetry, an order of the relative 'intuitive-ness' of the four 

transformations was made. Translation has been placed at the top because repetition was 

used and understood easily by virtually all of the students. Perhaps the most surprising 

observation is the low use of horizontal reflection by itself in frieze patterns. 

1. Translation (most frequent and common) 

2. Vertical Reflection. 

3. Half-Tum 

4. Horizontal Reflection. 

5. Glide Reflection (infrequent and uncommon) 

However, the implications of these results to the intuitive use of transformations in frieze 

patterns with more than one kind of symmetry (besides translation) was argued to be 

questionable; combinations of symmetries can yield other unintended symmetries. 

All the symmetry groups, apart from pma2, were most commonly drawn as disjoint for 

the Primary group. Indeed 75% of all the Primary students' patterns were di sjoint, 

whereas the proportion of disjoint to connected patterns made by Form 4's was almost 

equal. This result suggests that the Primary students favoured a 'pattern parts' 

construction over a 'whole' construction, whereas the Form 4's used both approaches 

equally. 

Interviews 

The quantitative analysis of the 'unrestricted' patterns had several shortcomings however. 

Some symmetries identified weren't intended by the creators; these accidents occurred 

due to arbitrary choices of spacing or positioning of figures within a pattern. Incidental 

symmetries, resulting as a spin-off from the use of other transformations, also occurred. 

Conversely, the use of transformations not included in the elements of frieze groups was 

noted in the interviews. Another complication in frieze group analysis is that it requires 

the pattern to be extended infinitely, an extension probably not imagined by most, if not 

all, of the Primary subjects. 

Several different construction methods were identified in the interviews, each method 

having its own particular use of symmetry operations and associated understanding of 

those operations. The most common method of making a frieze pattern was a base pattern 

construction, in which a motif is designed and then repeated along the strip. Other 
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approaches included the use of incidence relations (the repeated application of a 

transformation on a motif to generate a pattern), tilings (building, or dividing, a strip with 

congruent parts) and filamentary techniques (curve sketching). Sometimes, combinations 

of these methods were used, resulting in a superimposition of two or more patterns. 

7.1.3 Results of the Restricted Pattern Construction Activity 

Survey 

The restriction imposed on the subjects in activity (b) yielded some interesting results. 

The frieze pattern which arose most naturally for all three age groups surveyed were 

plll, pmll and p112. The most unusual frieze groups were plml and plal. The 

occurrence of pmm2 and pma2 dropped from the previous exercise, thereby raising 

(somewhat unanswered) questions about the deliberate use of particular symmetries 

present in those patterns. 

Based on the ordering of the 5 frieze groups with translation and one other kind of 

symmetry, the ordering of the rigid transformations with respect to intuition is similar to 

activity (a) . 

1. Translation (most intuitive) 

2. Vertical Reflection 

3. Half-Tum 

4. Glide Reflection, Horizontal Reflection. (least intuitive) 

The style analysis of the total number of patterns drawn, and of the separate frieze 

groups, revealed that the Primary and Tertiary groups were quite similar in the patterns 

they drew, and therefore in the construction methods use to produce them. The Form 4's 

patterns differed in several ways. Two characteristic features of the Secondary activity (b) 

patterns was the extensive use of half tum and also of tilings. Indeed, many p 112 tilings 

occurred which have both of these features. It seems that the Fourth Form students have 

been affected by the formal transformation geometry framework which they have been 

recently exposed to, and thus their use of transformation geometry was probably not 

intuitive as the other age groups. 
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Interviews 

Despite the restriction, the methods used to make the activity (b) patterns were very 

similar to those of activity (a). The base pattern construction, for example, was still the 

most commonly used. Of course, some notable omissions and additions were discovered 

in the interviews. Furthermore, the relative popularity of the various methods was 

probably a little different to that of activity (a), with the number of tilings increasing, and 

a reduction in the use of filamentary and incidence techniques 

In general, the Primary school students' use of transformation geometry in activity (b) 

was more explicit than in activity (a). For example, in the base pattern construction, the 

use of symmetry within the base pattern appeared to be more intentional in activity (b ). 

The explicit and implicit transformations associated with each method, and a comparison 

of actvity (a) and (b) methods, are described in sections 4.4, 4.5, and 5.4. 

7.1.4 Results of the Pattern Description Activity 

Primary Survey Results 

A number of criteria for describing frieze patterns were identified. These criteria were: 

A. Explicit differentiated and undifferentiated transfo1111ations. 

13. Implicit 'parts' and 'whole' comparisons. 

C. Orientation or Directional Judgements. 

D. Position Judgements. 

E. Miscellaneous. 

The explicit description of transformations was not common for any of the groups; 

roughly one in five Primary students mentioned translation, and even less noted vertical 

reflections. Rotation, horizontal reflection and glide reflection were very rarely noted by 

the children. It seems that using transformations to make patterns is easier (to the 

children) than describing patterns in 'transformation' language. This does not seem 

surprising given the reflective nature of verbalizing one's apprehension of spatial 

relationships. 

There were many clear signs that children and adults alike conceived the 'pattern' to be 

the base pattern (the motif which repeats to make the whole design), and that each design 

presented was perceived as the set of figures and lines actually drawn on the page; it was 

not imagined to continue indefinitely. This perception contrasts with the infinite extension 
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assumed for frieze group classification. Secondly, the Primary school students' 

descriptions of a half-tum symmetry indicated a composition of reflections just as often as 

a rotation. More importantly, it appears that some transformations, such as horizontal 

reflection and half-turri, weren't easily distinguished by many Primary subjects. 

Age Group Survey Comparison 

Primary students commonly used implicit transformation geometry by comparing pattern 

parts with real world objects; they employed a form of metaphor or simile. As the age of 

the subjects increased, the descriptions of transformations became more explicit up to 

formal operations stage, after which a greater scope of descriptions occurred. The use of 

implicit transformation geometry by comparison of the 'whole' pattern was not 

particularly common for any group. 

Interviews 

The oral explanations the children gave of their written descriptions often brought out 

more explicit transformation geometry phrases. The children appeared to have seen more 

than they recorded on paper which, given their writing skills, does not seem surprising. 

A common description of the pattern was to describe the base pattern only, often using a 

comparison to a real world object or another pattern's translation unit. The translation of 

the base pattern, according to the interview material, was so obvious to the students that 

they didn't mention it. The interviews also confirmed the notion that the students had 

conceived the designs displayed as precisely those points etched on the page; they did not 

appear to even consider the possibility of an infinite extension in the manner of a frieze 

group. This finding adds weight to the argument presented in this thesis that any 

symmetries perceived are usually between parts of a pattern, and not the pattern as a 

whole. 

From the interview material, it seems clear that transformation geometry ideas were not 

extensively verbalised as a criteria for matching two frieze patterns, although many 

correct matches between frieze groups were made. Other characteristics such as position, 

orientation and direction of points and lines were dominant in the descriptive domains of 

the Primary subjects interviewed. If an example did include a transformation geometry 

explanation, it was always of reflection, and usually of vertical reflection. 
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7.2 Implications 

Pedagogical Implications 

Booth (1981), and Lesh (1976) have pointed to the importance of describing intuitive 

transformation geometry concepts, in an effort to provide teachers and researchers with 

further insight into the concepts that a child might bring with them into a classroom. By 

exploiting Gagatsis and Patronis' (1990) idea of using geometrical models as a way of 

moving from intuitive to reflective concepts, one would hope that effective and significant 

learning will take place in the classroom. Success with such methods has been reported 

by mathematics educators, as well as teachers in others areas such as art and music. For 

example, Booth (1985) used young children's spontaneous pattern painting as a way to 

link art to mathematics and found that substantial gains were made in the transformation 

geometry area. Indeed, with the advent of a new New Zealand mathematics curriculum, 

which emphasizes relevance and practical problem solving, the links between 

transformation geometry and other subjects (such as culture, an, and computing) seem 

particularly appropriate for students to explore. 

If frieze pattern construction activities are used in the classroom, it may be worth asking 

students to align some of their patterns vertically and some horizontally ( with respect to 

themselves). Although not conclusive, the results from the restricted construction activity 

suggested that symmetries may be used differently in each case; hopefully, this approach 

would result in the class having a wider variety of symmetries to explore. 

One of the recurring themes of the two frieze pattern construction chapters was the 

noticeable difference between the symmetry group analysis, the behaviours used to 

produce a pattern, and the child's intuitive understanding of the process they used. It 

seems quite likely that children don't necessarily understand concepts in the same way as 

a teacher may deliver them. Clearly, students are not empty vessels into which knowledge 

can be poured. Therefore, if a teacher wishes to evaluate a child's understanding of 

transformations, it would seem that students should be encouraged to talk about their own 

understanding of transformations; observing either the process or the final product of a 

transformation activity may not be sufficient for effective assessment. 
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Implications for Research 

In general terms, this thesis has reinforced three important points for research: 

1. Mathematical structures must be used carefully when examining intuitive mathematical 

concepts. For example, while the employment of frieze group analysis was systematic 

and provided general clues about the extent to which various symmetries were used 

in the frieze pattern constructions, in several cases it was actually misleading. This 

also reinforces Grunbaum's (1984) warning to anthropologists about the use of 

symmetry classifications for analysing designs from various cultures. 

2. Case studies seem to have been the most helpful research method for identifying the 

character of intuitive transformation geometry concepts. Uncovering the process of 

construction, rather than the product, was a useful focus for this aspect of 

investigation. For instance, determining the order of a pattern's construction provided 

a number of important insights. However, the most important approach was the 

questioning of a subject's understanding of the operations employed. For instance, 

base pattern and incidence constructions can result in the same product, and appear to 

use the same process (i.e ., construction sequence), but are understood by the creator 

in two different ways. 

3 . Similarly, obtaining children's oral explanations of their written descriptions clarified 

the intended meaning of many phrases. It appears that children use qualitatively 

different criteria to adults for making mathematical judgements. Quite clearly, the type 

and range of criteria used for describing (discrete) frieze patterns varied between the 

Standard 3/4, Form 4, and Tertiary groups. For example, the idea of undifferentiated 

phrases and orientation judgements, common amongst the primary children in their 

frieze pattern descriptions, confirmed Lesh's (1976) suspicion that children do not 

necessarily conceive of transformation relationships as slides, flips and turns, or even 

motions. 

The scope for further research of intuitive mathematical concepts appears to be large, 

particularly in the area of transformation geometry. Some suggestions are listed below: 

1. An exploration of the character· of the use intuitive transformation geometry in patterns 

with more than one type of symmetry, such as pmrn2 and pma2 is desirable. More 

generally, a description of the intuitive perception and construction of 2-dimensional 

(wall paper) patterns would be useful. 
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2. The effect of a frieze pattern's alignment relative to its designer has only been briefly 

considered in this study. The suggestive results from the restricted activity indicate 

that it may be an area worth pursuing in order to establish whether students use 

transformations differently in various orientations of the strip. 

3. In the mathematics education field, it would be helpful to find out all the variables 

affecting frieze pattern perception, since these factors probably affect how students 

learn transformation geometry from patterns. For instance, what role do symmetries, 

colour symmetries and non-rigid transformations play in this process? Are there any 

notable differences between cultures, genders, or personality types? 

4. It may be more appropriate for students to learn and use other mathematical structures 

in describing patterns before using transformations or frieze groups. The development 

of such structures, for use at Primary level, is a potential area of research. 

5. Standard 3 and 4 children have a tendency to describe pattern parts using simile or 

metaphor. Does this extend to the description of other mathematical phenomena, and 

if so, how can this be exploited in the classroom? 

This project set out to identify some of the transformation ideas that a child may bring into 

a classroom before formal concepts are taught. There can be little doubt that the 

description of children's intuitive transformation concepts is not trivial. A variety of 

techniques are needed to explore this area, especially those based on the learner's 

conceptions of transformations rather than imposing a finished mathematical product as 

the framework to understand a child's cognitive structure. A child's intuitive 

understanding of transformations is often rich and apt. Rather than being disregarded , 

this understanding needs to be built on by the learning of reflective formal ideas. 

Indeed, the frieze pattern construction activities appeared to be interesting to the students 

involved and resulted in a wide variety of uses of transformations. The pattern description 

exercise provided many clues about how transformations are perceived. Relevant, 

appropriate, revealing and motivating, there seems to be a strong case for making frieze 

patterns an integral part of the teaching and learning of transformation geometry. 



Appendices 

In appendices A and B, an asterisk in an 'average number made' column denotes that the 

average is calculated only for those who actually drew the particular category of pattern 

shown by the respective rows. In table A2.4 for example, the Secondary students who 

made a connected pl 12 produced about 2 of them on average, whilst the average over the 

whole group was only 0.8. 

A blank indicates that an entry would be non-sensical, either because it would involve 

dividing by zero, or because the particular combination of column and row categories has 

no meaning. 

Appendix A: Result Tables of Activity (a) 

Table Al.1 - Frieze Group Results of the Primary Children's Unrestricted Pattern 

Construction 

Frieze Group Numeracy % of Total No. of % of Average Average 
Patterns Students Students No. Made* No. Made 

plll 371 27 86 87 4.3 3.7 
plml 41 3 31 31 1.3 0.4 
pml 1 340 25 87 88 3.9 3.4 
plal 3 0 3 3 1.0 0 .0 
pl 12 91 7 54 55 1. 7 0 .9 

pmm2 254 18 75 76 3.4 2 .6 
pma2 110 8 62 63 1.8 1.1 

FG Unclear 97 7 48 48 1.8 1.0 
No T. Sym 78 6 20 20 3.9 0 .8 

Total 1385 100 99 100 14.0 
Different FGs 398 4 .0 

Table Al.2 - A Frequency Breakdown of the Primary Children's First Three 

Unrestricted Patterns 

Frieze Group % Drawn 1st % Drawn 2nd % Drawn 3rd % of Total 
Patterns 

pll 1 26 30 31 27 
plml 1 2 1 3 
pmll 27 21 25 25 
plal 0 0 1 0 
pll2 9 8 6 7 

pmm2 15 17 18 18 
pma2 10 8 6 8 

Can't Classify 11 13 10 13 
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Table Al.3 - A 'Kind' Classification of the Primary Children's Unrestricted Pattern 

Construction 

Kind No: of Patterns % of Total No. of Students % of Students 
Patterns 

Disjoint 1040 75 96 97 
Connected 279 20 54 55 

Unsure 65 5 39 39 

Table Al.4 - Frieze Group/Kind Results of the Primary Children's Unrestricted Pattern 

Construction. 

This table displays a refinement of the frieze group analysis of the unrestricted pattern 

construction. Note: no pattern can be judged as displaying no evidence of translation 

symmetry and also be sensibly classified as 'connected'; the design displayed may be an 

element of a larger discrete pattern, or it may simply be a finite design. 

Frieze Kind No. of % of % of Total No. of %of Av .No. Av. No. 
Group Kind FG Patterns Students Students Made* Made 
pl 11 Disjoint 344 93 24.8 81 82 4.2 3.5 

Connected 17 5 1.2 14 14 1.2 0.2 
Unsure 10 2 0.7 8 8 1.3 0.1 

plml Disjoint 39 96 2.8 30 30 1.3 0.4 
Connected 1 2 0.1 1 1 1.0 0 .0 

Unsure 1 2 0.1 1 1 1.0 0.0 
pmll Disjoint 245 72 17.7 80 81 3.1 2.5 

Connected 89 26 6.4 47 47 1.9 0.9 
Unsure 6 2 0.4 5 5 1.2 0.1 

plal DiSJOint 1 33 U. l 1 1 l.U 0.0 
Connected 2 67 0.1 2 2 1.0 0 .0 

Unsure 0 0 0.0 0 0 0.0 
pll2 Disjoint 57 63 4.1 41 41 1.4 0.6 

Connected 19 21 1.4 14 14 1.4 0 .2 
Unsure 15 16 1.1 13 13 1.2 0.2 

pmm2 DiSJOint 179 70 12.9 67 68 2.7 1.8 
Connected 60 24 4.3 34 34 1.8 0 .6 

Unsure 15 6 1.1 12 12 1.3 0 .2 
pma2 Disjoint 37 34 2.7 27 27 1.3 0.4 

Connected 65 59 4.7 40 40 1.7 0.7 
Unsure 8 7 0.6 6 6 1.3 0 .1 

. FU Unclear DiSJOint 65 67 4.7 38 38 1.7 0 .7 
Connected 26 27 1.9 18 18 1.4 0.3 

Unsure 6 6 0.4 6 6 1.0 0 .1 

NoT. Sym Disjoint 72 92 5.2 18 18 4.0 0.7 
Connected 

Unsure 6 8 0.4 4 4 1.5 0.1 

Total 1385 100.0 99 lw 14.0 
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Table A2.l - Frieze Group Results of the Secondary Class's Unrestricted Pattern 

Construction. 

Frieze Numeracy % of Total No. of % of Average Average 
Group Patterns Students Students No. Made* No. Made 
pl 11 60 20 18 95 3.3 3.2 
plml 12 4 5 26 2.4 0.6 
pmll 71 24 18 95 3.9 3.7 
plal 0 0 0 0 
pl 12 33 11 13 68 2.5 1. 7 

pmm2 64 21 17 89 3.8 3.4 
pma2 36 12 14 74 2.6 1.9 

Unclear 23 8 11 58 2.1 1.2 
No T. Sym 2 1 2 11 1.0 0.1 

Total 301 100 19 100 15 .8 
Different 85 4.5 

FGs 

Table A2.2 - A Frequency Breakdown of the Secondary Class's First Three 

Unrestricted Patterns 

Frieze Group % Drawn 1st % Drawn 2nd % Drawn 3rd % of Total 
Patterns 

plll 21 16 11 20 
plml 5 0 0 4 
pml 1 11 26 32 24 
plal 0 0 0 0 
pl12 16 11 11 11 

pmm2 5 26 32 21 
pma2 26 21 11 12 

Can't Classify 16 0 5 9 

Table A:l.3 - A 'Kind' Classification of the Secondary Class's Unrestricted Pattern 

Construction 

Kind Numeracy % of Total No. of Students % of Students 
Patterns 

Disjoint 147 49 18 95 
Connected 143 48 19 100 

Unsure 11 4 6 32 
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Table A2.4 - Frieze Group/Kind Results of the Secondary Class's Unrestricted Pattern 

Construction. 

Fnezc Kmd No. or % ol % ofTolal No. ot % ol Av. No. Av. No. 
Group Kind FG Pauems Sludenls Sludenls Made* Made 
pl 11 DISJ0111l 43 72 14.3 14 74 3.1 2.3 

Connecled 17 28 5.6 9 47 1.9 0.9 
Unsure 0 0 0.0 0 0 0.0 

plml DiSJOtnl 7 58 2.3 5 26 1.4 0.4 
Connecled 4 33 1.3 2 11 2.0 0.2 

Unsure 1 8 0.3 1 5 1.0 0.1 
pml 1 Disjoml 41 58 13.6 15 79 2.7 2.2 

Connected 30 42 10.0 14 74 2.1 1.6 
Unsure 0 0 0.0 0 0 0.0 

plal Disjoinl 0 0.0 0 () 0.0 
Connecled 0 0.0 0 0 0.0 

Unsure 0 0.0 0 0 0.0 
pl 12 DISJ0111t 14 42 4.7 IO 53 1.4 0.7 

Connected 15 45 5.0 8 42 1.9 0.8 
Unsure 4 12 l.3 3 16 l.3 0.2 

pmm2 Disjoinl 32 50 10.6 15 79 2.1 1.7 
Connected 30 47 10.0 13 68 2.3 l.6 

Unsure 2 3 0.6 2 11 1.0 0.1 
pma2 DISJOtrll 3 8 1.0 3 16 1.0 0.2 

Connected 33 92 1.1.0 14 74 2.4 1.7 
Unsure 0 0 0.0 0 0 0.0 

FG Unclear Disjoint 5 22 1.7 4 21 l.3 0.3 
Connccled 14 61 4.7 3 16 2.0 0.7 

Unsure 4 17 1.3 7 37 1.3 0.2 
No T. Sym DISJ0111l 2 !(X) 0.7 2 11 1.0 0.1 

Connecled 
Unsure 0 0 0.0 0 0 0.0 0.0 

Tot.al 301 100.U 19 100 15.8 
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Appendix B: Result Tables of Activity (b) 

Tables in appendix B display the results of the restricted frieze pattern construction for 

each age group surveyed: Primary (B 1), Secondary (B2) and Tertiary (B3) . 

Table Bl.] - Frieze ·Group Results of the Primary Children's Restricted Pattern 

Construction 

Frieze Numeracy % of Total No. of % of Av. No. Av. No. 
Group Patterns Students Students Made* Made 
p 111 342 42 86 87 4.0 3.5 
plml 14 2 12 12 1.2 0.1 
pml l 169 21 69 70 2.4 I. 7 
plal 15 2 13 13 1.2 0.2 
pl 12 70 9 42 42 1.7 0.7 

pmm2 33 4 20 20 1.7 0.3 
pma2 40 5 28 28 l .4 0.4 

FG Unclear 44 5 23 23 1.9 0.4 
No T. Sym 81 10 26 26 3.1 0.8 

Total 806 100 99 100 8.1 
Different 270 2.7 

FGs 

Table 81.2 - A Frequency Breakdown of the Primary Children's First Three Restricted 

Patterns 

Frieze Group % Drawn Isl % Drawn 2nd % Drawn 3rd % of Total 
Patterns 

p 111 36 47 41 42 
plml 1 0 0 2 
pm! 1 26 23 26 21 
plal 4 4 0 2 
p 112 14 8 6 9 

pmm2 3 2 3 4 
prna2 5 4 6 5 

Can't Classify 10 11 14 15 

Table Ill.3 - A 'Style' Classification of the Primary Children's Restricted Pattern 

Construction 

Style Numeracy % of Total No. of % of Students 
Patterns Students 

Discrete 350 51 88 89 
Non-Discrete 185 27 67 68 

Touchings 47 7 26 26 
Tiling/Filamentary 32 5 17 17 

Unsure(?) 69 10 27 27 
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Table Ill.4 - Frieze Group/Style Results of the Primary Children's Restricted Pattern 

Construction 

F1iczc SLylc Numeracy % of % orToLal No. or % or Av . No. Av . No. 
Group FG Pallems Students Students Made* Made 
pl 11 PSI 147 43 18.2 61 62 2.4 1.5 

NOP 159 47 19.7 57 58 2.8 1.6 
Tou 19 6 2.4 14 14 1.4 0 .2 

Til/Fil 1 0 0 .1 1 1 1.0 0 .0 
? 16 5 2 .0 9 9 1.8 0.2 

plml PS3 5 36 0.6 4 4 1.3 0 .1 
PS4 4 29 0.5 3 3 1.3 0 .0 
NDP 0 0 0 .0 0 0 0 .0 
Tou 4 29 0.5 4 4 1.0 0 .0 

Til/Fil 0 0 0.0 0 0 0 .0 
? 1 7 0 .1 1 1 1.0 0 .0 

pml 1 PSS 47 28 5 .8 30 30 1.6 0 .5 
PS6 54 32 6.7 28 28 1.9 0 .5 
NDP 17 10 2 .1 12 12 1.4 0. 2 
Tou 20 12 2.5 13 13 1.5 0. 2 

Til/Fil 0 0 0.0 0 0 0 .0 
? 31 18 3.8 15 15 2.1 0 .3 

plal PS2 14 93 l.7 12 12 1.2 0.1 
NOP 1 7 0.1 I I 1.0 0.0 
Tou () 0 0 .0 () () 0.0 

Til/Fil 0 0 0.0 0 0 0 .0 
? 0 0 0 .0 0 () 0.0 

p 111. PS7 29 41 3.6 23 23 1.3 0.3 
PS8 13 I<) l.(i 8 8 1.6 0. I 
NOP 5 0.6 5 5 1.0 0 .1 
Tou 3 4 0.4 2 2 1.5 0 .0 

Tit/Fil 18 26 2.2 11 1 1 1.6 0 .2 
? 2 3 0.2 2 2 1.0 0 .0 

pmm2 PS12 1 3 U.2 1 l 1.0 0.0 
PS13 0 0 0.0 0 0 0 .0 
PS14 2 6 0 .2 2 2 1.0 0 .0 
PS15 18 55 2 .2 14 14 1.3 0.2 
NDP 1 3 0.1 1 l 1.0 0.0 
Tou 0 0 0.0 0 0 0.0 

Tit/Fil 3 9 0.4 3 3 1.0 0 .0 
? 8 24 1.0 6 6 1.3 0 .1 

pma2 PS9 6 15 0 .7 4 3 1.5 0 .2 
PSJO 4 10 0.5 4 4 1.0 0.0 
PSl 1 6 15 0.7 5 5 1.2 0 .2 
NOP 2 5 0.2 2 2 1.0 0.2 
Tou I 3 0.1 1 1 1.0 0 .0 

Tit/Fil 10 25 1.2 10 10 1.0 0. I 
? 11 28 1.4 10 10 1.0 0 . 1 

FG Unclear 44 5.5 23 23 1.9 0.4 

NoT Sym 81 10.0 26 26 3.1 0.8 

Total 808 100.0 99 100 8. 1 
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Table B2.l - Frieze Group Results of the Secondary Students' Restricted Pattern 

Construction 

Frieze Group Numeracy % of Total No. of % of Av . No. Av. No. 
Patterns Students Students Made* Made 

pll 1 188 25 64 75 2.9 2.2 
plml 40 5 31 36 1.3 0.5 
pmll 105 14 48 56 2.2 1.2 
plal 9 1 9 11 1.0 0 .1 
pl 12 141 18 63 74 2.2 1. 7 

pmm2 89 12 49 58 1.8 1.0 
pma2 79 10 46 54 1.7 0.9 

No T. Sym 84 11 32 38 2.6 1.0 
FG Unclear 28 4 20 24 1.2 0.3 

Total 763 100 85 100 9.0 
Different FGs 304 3.6 

Table B2.2 - A Frequency Breakdown of the Secondary Students' First Three 

Restricted Patterns 

Frieze Group % Drawn 1st % Drawn 2nd % Drawn 3rd % of Total 
Patterns 

p 111 15 16 24 25 
plml 0 7 7 5 
pml 1 15 11 11 14 
plal 0 2 0 1 
pll2 47 29 19 18 
pmm2 2 8 13 12 
pma2 8 13 16 10 

Can't Classify 12 12 11 15 

Table B2.3 - A 'Style' Classification of the Secondary Students' Restricted Pattern 
Construction 

Style Numeracy % of Total No. of % of Students 
Patterns Students 

Discrete 157 24 42 49 
Non-Discrete 36 6 21 25 

Touching 150 23 55 65 
Tiling/Filamentary 264 41 69 81 

Unsure(?) 44 7 18 21 
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Table B2.4 - Frieze Group/Style Results of the Secondary Students' Restricted Pattern 

Construction 

Frieze Style Numeracy % ot % at Total No. ot % ot Av . No. Av. No . 
Group FG Patterns Students Students Made* Mooe 
plll PSI 70 37 9.2 31 36 2.3 0.8 

NDP 28 15 3.7 17 20 1.6 0.3 
Tou 63 34 8.3 41 48 1.5 0.7 

Til/Fil 20 11 2.6 12 14 1.7 0.2 
? 7 4 0.9 7 8 1.0 0 .1 

plml PS3 1 3 U. l 1 1 1.0 0.0 
PS4 0 0 0.0 0 0 0.0 
NDP 1 3 0.1 1 1 1.0 0.0 
Tou 13 33 1.7 13 15 1.0 0.2 

Til/Fil 18 45 2.4 13 15 1.4 0.2 
? 7 18 0 .9 6 7 1.2 0.1 

pmll PSS 27 26 3.5 13 15 L . l U,j 

PS6 20 19 2.6 13 15 1.5 0.2 
NDP 3 3 0.4 3 4 1.0 0.0 
Tou 39 37 5.1 28 33 1.4 0.5 

Til/Fil 6 6 0.8 5 6 1.2 0.1 
? 10 10 1.3 9 11 1.1 0.1 

plal PS2 4 44 0 .5 4 5 1.0 0 .0 
NDP 1 11 0.1 1 1 1.0 0 .0 
Tou 4 44 0.5 4 5 1.0 0.0 

Til/Fil 0 0 0.0 0 0 0.0 
? 0 0 0.0 0 0 0 .0 

p112 PS7 12 9 1.6 10 12 1.2 0.1 
PS8 9 6 1.2 8 9 1.1 0.1 
NDP 1 1 0.1 1 1 1.0 0 .0 
Tou 4 3 0.5 4 5 1.0 0.0 

Til/Fil 113 80 14.8 51 60 2.2 1.3 
? 2 1 0.3 2 2 1.0 0.0 

pmm2 PS12 2 2 0.3 1 1 2.0 0 .0 
PS13 0 0 0.0 0 0 0 .0 
PS14 1 1 0.1 1 1 1.0 0 .0 
PSIS 4 4 0.5 3 4 1.3 0 .0 
NDP 2 2 0.3 2 2 1.0 0 .0 
Tou 24 27 3.1 19 22 1.3 0.3 

Til/Fil 47 53 6.2 31 36 1.5 0.6 
? 9 10 1.2 7 8 1.3 0 .1 

pma2 PS9 5 6 0.7 4 5 1.3 0.1 
PSlO 1 l 0.1 1 1 1.0 0.0 
PSI 1 1 1 0.1 1 1 1.0 0.0 
NDP 0 0 0.0 0 0 0.0 
Tou 3 4 0.4 3 4 1.0 0.0 

Til/Fil 60 76 7.9 36 42 1.7 0.7 
? 9 11 1.2 7 8 1.3 0.1 

FG Unclear 28 3.7 20 24 1.4 0 .3 
No T. Sym 84 11.0 32 38 2.6 1.0 

Total 679 89.0 85 100 8.0 
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Table B3.1 - Frieze Group Results of the Tertiary Students' Restricted Pattern 

Construction 

Frieze Numeracy % of Total No. of % of Av. No. Av. No. 
Group Patterns Students Students Made* Made 

-
plll 385 42 69 100 5.6 5.6 
plml 14 2 9 13 1.6 0.2 
pmll 167 18 58 84 2.9 2.4 
plal 12 1 8 12 1.5 0.2 
pl 12 114 12 52 75 2.2 1. 7 

pmm2 45 5 27 39 1.7 0 .7 
pma2 51 6 34 49 1.5 0.7 

Unclear 21 2 15 22 1.4 0.3 
No T. Sym 116 13 42 61 2.8 1.7 

Total 925 100 69 100 13.4 
Different 259 3 .8 

FGs 

Table B3.2 - A Frequency Breakdown of the Tertiary Students' First Three Restricted 

Patterns 

Frieze Group % Drawn 1st % Drawn 2nd % Drawn 3rd % of Total 
Patterns 

plll 35 36 34 42 
plml 0 0 3 2 
pml 1 23 19 28 18 
plal 0 3 4 1 
p 112 19 26 7 12 

pmm2 4 0 4 5 
pma2 6 1 4 6 

Can 't Classify 13 15 15 15 

Table B3.3 - A 'Style' Classification of the Tertiary Students' Restricted Pattern 

Construction 

Style Numeracy % of Total No. of % of Students 
Patterns Students 

Discrete 298 38 45 65 
Non-Discrete 181 23 48 70 

Touching 213 27 40 58 
Tiling/Filamentary 79 10 31 45 

Unsure(?) 17 2 11 16 
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Table B3.4 - Frieze Group/Style Results of the Tertiary Students' Restricted P attern 

Construction 

Fneze Style Numeracy % ot % ot Total No. ot % ot Av. No. Av. No. 
Group FG Patterns Students Students Made* Made 
pll l PSI 120 31 13.0 48 70 2.5 1.7 

NDP 150 39 16.2 44 64 3.4 2.2 
Tou 107 28 11.6 38 55 2.8 1.6 

Til/Fil 3 1 0.3 3 4 1.0 0.0 
? 5 1 0 .5 4 6 1.3 0.1 

plml PS3 2 14 0.2 2 3 1.0 0.0 
PS4 3 21 0.3 2 3 1.5 0.0 
NDP 1 7 0.1 1 1 1.0 0 .0 
Tou 4 29 0.4 4 6 1.0 0.1 

Til/Fil 2 14 0.2 2 3 1.0 0.0 
? 2 14 0.2 2 3 1.0 0.0 

pmll P:S5 50 30 5.4 27 39 1.9 0.7 
PS6 30 18 3.2 19 28 1.6 0.4 
NDP 21 13 2.3 17 25 1.2 0 .3 
Tou 61 37 6.6 25 36 2.4 0.9 

Til/Fil 2 1 0.2 2 3 1.0 0.0 
? 3 2 0.3 3 4 1.0 0.0 

plal PS2 6 50 0.6 4 6 1.5 0 .1 
NDP 1 8 0.1 1 1 1.0 0.0 
Tou 4 33 0.4 3 4 1.3 0.1 

Til/Fil 1 8 0 .1 1 1 1.0 0.0 
? 0 0 0.0 0 0 0.0 

pll2 PS7 31 27 3.4 22 32 1.4 0.4 
PS8 23 20 2 .5 16 23 1.4 0.3 
NDP 3 3 0.3 3 4 1.0 0.0 
Tou 5 4 0.5 5 7 1.0 0 .1 

Til/Fil 51 45 5.5 23 33 2.2 0.7 
? 1 1 0.1 1 1 1.0 0.0 

pmm2 PS12 6 13 0.6 5 7 1.2 0.1 
PS13 0 0 0.0 0 0 0.0 
PS14 2 4 0.2 2 3 1.0 0.0 
PSIS 5 11 0.5 5 7 1.0 0.1 
NDP 1 2 0.1 1 1 1.0 0.0 
Tou 26 58 2.8 13 19 2.0 0.4 

Til/Fil 2 4 0.2 2 3 1.0 0.0 
? 3 7 0.3 3 4 1.0 0.0 

pma2 PS9 13 25 1.4 12 17 1.1 0.2 
PSlO 3 6 0 .3 3 4 1.0 0.0 
PSll 4 8 0.4 4 6 1.0 0.1 
NDP 4 8 0.4 4 6 1.0 0.1 
Tou 6 12 0.6 5 7 1.2 0 .1 

Til/Fil 18 35 1.9 13 19 1.4 0.3 
? 3 6 0.3 3 4 1.0 0.0 

FG Unclear 21 2.3 15 22 1.4 0.3 

No T. Sym 116 12.5 42 2.8 1.7 

Total 925 100.0 69 100 13.4 
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Appendix C: Interview Cards 
The lists of patterns which follow are the ones which the students were asked to describe. 

The Cl patterns are from activity (c) in which written descriptions were made. Some 

Primary students were selected for interyiews, and oral explanations were asked for. 

Each of the 7 activity (c) patterns was mounted on a green card and the interviewees 

asked to look for any similarities between them. Later, the C2 patterns (mounted on red 

cards) were shown to the interviewees only and compared with the 'green' patterns. A 

similar matching exercise was undertaken with the 'green' and the 7 continuous, 

filamentary (beige) patterns, shown here in appendix C3. 

Cl - Discrete Examples of the Seven Frieze Groups (GREEN)1 

plll [PSI] 

plml [PS3] 

>·1t1 rn · ·hr· 

pmll [PSS] 

plul [PS2] 

pl12 [PS7] 

pmm2 [PS12] 

pma2 [PS9] 

1 The patterns shown are reduced from their original size. 
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C2 - Another Set of Discrete Examples of the Seven Frieze Groups (RED) 

plll [PSI] 

plml [PS3] 

pmll [PSS] 

-=lF ~F 

plal [PS2] 

_jJ 
77 

pll2 [PS7] 

pmm2. _ [PS12] 

_LJ LL 
17ft 

pma2 [PS9] 

_LJ LL 

_jJ 
Tl 

_jJ 
77 

_jJ 
Tl 

~ F 1F ~F ~F 

77 
_jJ 

77 
_jJ 

77 

_jJ rr _jJ fT 

_jJLJ_ 
77fT 

209 

_jJ 

_JJ L 
77 r 

_jJ 
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C3 - Continuous, Filamentary Examples of the Seven Frieze Groups (BEIGE) 

p 111 

p 1 m 1 

pm 11 

plul 

p112 

pmml 

pmu2 

·-- - - .. - -··--·----------- -------
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Appendix D: Transfor1nation Geon1etry Resources 

It would be an oversight not to list and describe some of the ideas and resources that can 

be utilised by teachers in the area of transfom1ation geometry, and in particular, in pattern 

making or pattern perception. The list of articles below is by no means exhaustive; its 

purpose is to indicate some of the breadth possible in approaching this top ic. Since the 

emphasis of this thesis is on the nine and ten year old subjects, the activ ities given below 

are predominantly aimed at the Primary level, although not exclusively. 

D I T ransformations and Symmetry o f Finite Obj ects 

l. DIENES, Z. AND GOLDING, E. (1975) Exploration of Space and Practical Measurement 

(6th Ed. ), Education Supply Association, Harlow, Essex. 

On pages 15-21, the authors outline some activities and games for young chi ldren that 

involve action and attention to reflection and rotation. No theory is introduced. The set up 

of the games is the sketching of a large shape on the floor with two lines of symmetry, 

one symmetry line coloured green (say), the other red. /\ child, standing in the centre 

with a 'flipper' or 'turner' (a piece uf wood similarly marked , but not coloured), directs 

the other four children (by flipping or rotating the flipper) , each of whom is in one of the 

four regions created by the mirror lines. Developments of thi s game are made by using 

mirrors ror 'experiments' . They conclude: 

"The games and activities described arc meant for opening doors for children Lo different areas of 

enquiry, so that when the Lime comes, the development of the ideas should be based on situations 

which have become old friends." 

2. WOODWARD, E. AND BUCKNER, P. (1987) Reflections and symmetry: a second­

grade miniunit. Arithmetic Teacher, 35 (2), 8-11. 

This article describes the activities of a five day miniunit for second-graders, using 

"Mira's" to explore reflection symmetry. It is a development of Woodward's earlier 

article in Ari thmetic Teacher (volume 24, Feb. 1977, pl 17). At the end of the miniunit, 

they believe that each student had a fim1 grasp of what it means for a figure to have line 

symmetry and were very enthusiastic about the use of the Mira. 
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3. EGSGARD, J. (1970) Some ideas in geometry that can be taught from K-6. Educational 

Studies in Mathematics, 478-495. 

After outlining activities to explore shape and area, Egsgard describes (on pages 489-493) 

activities suitable for studying transformation geometry from kindergarten level to grade 

six (form two). These include the folding of paper shapes, exploiting the tile patterns 

from the study of area, investigating pattern work in arts and crafts, blot patterns, sliding 

a cardboard shape (without turning) about a pattern to reinforce congruence and 

translation. Once the concepts of translation, reflection and rotation have been grasped 

from various activities, he suggests using various patterns to emphasise the differences 

between the three . Again, this could be achieved by using a cardboard shape and 

investigating how it needs to be transformed to get from one position to another. 

Discussion is also necessary. Examination of the properties of various plane figures could 

also include these concepts. 

4. "Ideas" (1989) What's your name? Arithmetic Teacher, 37 (1), 26-28. 

"Students are asked to determine numerical and fractional relationships, as well as identify vertical 

and horizontal symmetries of names drawn from children's literature . They are then asked to 

compare the attributes of their own name to those of the names of the characters listed" 

5. RENSHAW, B. (1986) Symmetry the trademark way. Arithmetic Teacher, 34 (1), 6-

12. 

Before examining trademarks, Renshaw explains that students should clearly understand 

line, rotational (and point, or half-tum) symmetry. Practical activities such as tracing and 

folding or rotating, or using a Mira can be helpful for these concepts. The tracing/folding 

or tracing/turning technique is then used in the investigation of trademarks. Questions to 

explore include: Can one trademark have more than one type of symmetry? 

6. JURASCHEK, W. AND MCGLATHERY, G. (1980) Funny Letters: A discrepant event. 

Arithmetic Teacher, 27 (8), 43-47 . 

When a test tube is held horizontally with the word "SULPHURDIOXIDE" facing the 

observer and is rolled 180° about its horizontal axis, the word SULPHUR is inverted, 

but DIOXIDE is not. This 'magic' is used as an impelling starting point for exploring the 

symmetry of letters. 
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7. CRAIG, J. (1989) Geometry through Logo, The Mathematics Teacher, 129, 36-39. 

While this article does not explicitly mention a transformation geometry framework, 

exercises include the drawing of shapes, repeating, enlarging or rotating them using a 

logo programme. The motivation this induces in the students is tangible. 

8. HOLCOMB, J. (1980) Using geoboards in the primary grades. Arithmetic Teacher, 27 

(8) , 22-25. 

Halcomb describes some exercises for Primary school children in counting, area, 

symmetry and pentominoes using geoboards. Records of symmetric figures can be kept 

on dot paper. He also recommends investigations of turning and matching figures with 

two geoboards. His article winds up by noting that not only are geoboards virtually 

indestructable, many children are motivated by this 'game' approach. 

D2 Symmetry and Patterns 

1. KAIS ER, B. (1988) Explorations with tessellating polygons. Arithmetic Teacher, 36 

(4) , 19-24. 

This article list three activities with extensions for each. The first involves determining 

which regular polygons will te sselate on a sheet of paper. The extension suggests 

exploring the reasons why a shape will or will not tile, providing an excellent application 

for angle measurement. In addition, it is also interesting to explore non-regular polygons, 

or using two or more regular polygons. The second activity uses letters of the alphabet. 

Made into polygons, letters such as C, L, S, and T form tilings. This presents students . 

with the opportunity to apply their knowledge of transformations in describing their 

pattern constructions. The third activity describes a way of modifying a shape which is 

known to tessellate so that the resulting figure will also tessellate, yielding Escher-type 

patterns. An extension of this method for Secondary students can be found in Sheila 

Haak's (Dec., 1976) article in Mathematics Teacher, 69, 647-652 entitled 

"Transformation Geometry and the Artwork of M . C. Escher." 

2. DELANEY, K. (1979) A place for space. Mathematics Teaching, 86, xvii-xxvii. 

This text emphasizes shape work investigations and is comprised of three articles which 

outline starting points that worked for some teachers. The first, entitled "Do-it-yourself 

Islamic patterns" by Kev Delaney and John Dichmont, describes the activity of drawing a 
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design on 2cm square paper, then making a large pattern by repeating it. To the teacher's 

surprise, most children did not get bored by repeating the basic unit but were fascinated to 

see the pattern gradually evolve. The analysis of one child's design led to an irrefutable 

conclusion: 

"we were forced to acknowledge the complexity of the thinking involved, and Lo recognise the 

elegance of Natalie's final design." 

The second article entitled "Tesselating Circles" by Kev Delaney suggests changing 

circles (or other non-tesselating figures) into an interesting variety of shapes which do 

tessellate. One method is by starting with a circle grid and outlining a suitable shape for a 

motif. Children could make Escher-like patterns by marking the motifs. One difficulty is 

that it is not always clear whether a shape will tessellate. 

The last of the three aticles is called "Thought and Action in a Primary School Classroom" 

by Michael Armstrong and describes the pleasure and excitement of Sally who made a 

tetrahedron from ball bearings magnetically held in place. This led her to asking how 

many balls there were in the stack, and so 011. In turn, this led to the writer presenting her 

with a box of (five-pointed) red sticky paper st.u-s and suggesting that Sally and her friend 

Helen try arranging them in patterns on paper. The writer reports his own astonishment at 

the virtuosity that the resulting patterns revealed . 

3. KNIGHT, G. (1984a) The geometry of Maori art - rafter patterns. New Zealand 

Mathematics Magazine, 21(3), 36-40. 

Knight explains how kowhaiwhai (Maori rafter patterns) can be classified mathematically 

according to seven symmetry classes. He suggests using this classification of 

kowhaiwhai in a local marae or museum as a project for students, the motivation being 

for students to relate the mathematics they learn to their cultural heritage. 

4. ZASLAVSKY, C. (1990) Symmetry in American Folk Art. Arithmetic Teacher, 38 (1), 

6-12. 

This article describes the analysis and construction methods that students could use to 

make American quilt designs or to make rugs similar to the ones made by the Navajo. The 

symmetry of motifs used is emphasized. Because studies show that girls are socialised to 

care more about people, it is argued that these activities which integrate mathematics with 

culture, art and history may motivate more girls to become interested in mathematics. It is 
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interesting to note that Mary Barnes, in her keynote address entitled Making Mathematics 

Girl Friendly at the 1991 Maths Across the Spectrum conference in New Zealand, formed 

a similar conclusion about the exploration of embroidery frieze patterns. 

5. SA WADA, D. (1985) Symmetry and tessellations from rotational transformations on 

transparencies. Arithmetic Teacher, 33 (4), 12-13. 

By superimposing two transparencies, each furnishing a dot grid, interesting 

'tessellations' arise. Various transformations of one grid with respect to the other yield 

different patterns which could form a basis for investigation. 

6. "Ideas" (1990) Make your own row patterns. Arithmetic Teacher, 31 (6), 30. 

Students are required to make row patterns from a single shape within the lines provided 

on a sheet. Students are encouraged to describe what happens to the shape as the pattern 

is continued. 

7. EBA, P. (1979) Space filling with solid polyominoes. Mathematics in School, 8 (2), 

2-5. 

Many writers explore ways of filling two-dimensional space with different types of 

polygonal cells. In contrast, Eba indicates the richness of exploring three-dimensional 

tesselations by using pentominoes as an example. 

8. BIDWELL, J. (1987) Using reflections to find symmetric and asymmetric patterns. 

Arithmetic Teacher, 34 (7), 10-15. 

Bidwell outlines a way of using four coloured squares, a 3x3 grid, and a mirror to 

achieve five goals: (a) 'move' the pattern with the mirror; (b) finding patterns with one, 

two or four lines of symmetry; (c) finding asymmetrical patterns; (d) deciding if patterns 

are different; and (e) working out all the patterns possible. 

9. RANSOM, P. (1988) Interfering with Islamic patterns. Mathematics in School, 17 (4), 

2-6. 

A standard method for producing an Islamic pattern on a square lattice of dots is given, 

followed by variations. Ransom found that pupils find these patterns fairly easy to 

produce (using tracing paper to check results) and practise transformations such as 
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translation, rotation, and reflection. He also 'discovers', like Suwada (1985) above, that 

the superimposition of two OHP slides with these dot grids produces interference patterns 

and suggests that it could be used as an investigation. 

10. THOMPSON, C. AND VAN DE WALLE, J. (1985) Patterns and Geometry with Logo. 

Arithmetic Teacher, 32 (7), 6-13. 

Beginning with concrete objects to make linear patterns with, other non-computer 

activities are introduced. Using a logo program (listed at the end of the article) students 

can construct their own figures and then linear patterns. A similar approach is made for 

the two-dimensional patterns where students use non-computer materials such as 

geoboards and grid patterns. An explanation of ways of repeating a figure in the logo 

environment is given to allow the construction of complex figures and two-dimensional 

patterns. 

11. WILLIAMS, H . (1989) Classifying Greek patterns, Micromath, 5 (1), 22-24. 

The focus in this article is on linear patterns. It also discusses all four rigid 

transformations . A method for classifying the patterns (into the seven frieze groups) is 

given and a logo program is listed which allows filamentary linear patterns to be 

constructed. 

12. OLIVER, J. (1979) Symmetry and Tessellations. Mathematics in School, 8 (1), 2-5. 

Methods are given for altering a square to produce interesting tilings, which can be used 

as a basis for exploring the applications of mathematics in art and design. 

13. ROBERTSON, A . (1989) Patterns of Polynesia: New Zealand. Heinemann Education, 

Auckland. 

General descriptions of the meanings of some Maori patterns, including kowhaiwhai, are 

given. Activities are outlined for students to construct their own patterns. 

Appendix E: Activity Sheets (a), (b) and (c) 

This appendix displays the three survey activities used in this study. 
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y Sheet (a): 

* * 

* * 

* 

* 

* * 

* * 

Age: 

Please fill iii as many of the following strips as you can to make differem 

repeatillg patterns. (Remember: a1Lythhzg goes!) 

* * * * * * * * * 

* * * * * * * * 

* * * 

* :fc * * * * 

* * * :fc * * * * * 

* * * * * * * * * * 

* * * * * * * * * * 

217 

* 

* 

* 

* 

* 

* 

* 
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* * * * * * * * * * * * * 

"' . * * * * * 

* * * * * * * * * * * * * 

* * * * * * * * * * * * * 

* * * * >I< * >I< * * * * 

* >I< >I< 

>I< * * * * * >I< * * 

* * * * * * * * * * * * 

* * * * * * * * * * * * 
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A enciices 

· Sheet(b): 
Age: I> 

Please fill i11 as many of tile following strips as you ca11 using only c/ze shape 

(in any way yolt wish) to make different repeating pauerns. 

* * * * * * * 

* * * * 

* * * * * * * * 

* * * * 

* * * * 

* * * * * * * * * 

* * * =~ * * * 
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* * * * * * * * * 

* * 

* * * * * * * * * 

* * * * * * * * * * * 

* * * * * * * * 

* * * * * 

... 

* * * * * * * * * * * * * 

* * * * * * * * * * 
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Name: Age: 

Activity Sheet (c.:): Describe the following patterns . 

a em One 

Description: . . ..... . . .. .. . . . . .. .. . .... ..... .. .. .. ... . ... .. . . . ....... . .... . ...... . ..... . .... ... . .... . . ... . .......... . ... . . 

Pattern Two 

Dcscr1pt1on: ..... .... . ..... ... .. ....... . ... ........ .. ...... . .. .... ... ... ... ........ . ........ ... .... ..... ... .. . .... ... . .. . 

····· ..... ........ ... .. .... ........ ...... .. . .. ... ... ... .... ........ .... ........ ..... .. ... ..... . .. ......... .... ..... ... .... .. . . 

.... , ..... .. .. ' .. .......... .. ···· · .... ..... .... ........... ... .. ...... .. .. .. .. ......... .. ..... ........... ...... ........ .... ... . 

····· .......... . ................ .. ..... ... .. . .... .. .. . .. ... .. ..... ... .......... ... .... .... ... ....... .. .. .... ..... ... .. ... .. .. . 
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Pattern Three 

Description: . . ..... . . . .. . ... ... . .. . .. .. . . .. .. ....... .. . .... . ...... . ............. . .... .... .. . .. . . . . ...... ........... . .. .. . 

Pattern Four 

Description: .. . ... .. . . ... .. ... . . . ........ . . . .. .. .. . . .... ..... ... ...... . ...... .... . .... . ....... . ..... ............ .. .. . . . . 

··· · · .... ... ... . .. ..... .... ..... ...... ...... ... .. .. .... .. .. .. ... ... .. ... .. .. .. .. . ... .... .... ...... ....... ... ... ..... . .. .. . .. . 

.. .. . ... .. .. .. ........ ... . .. ... ... .... .... .. . . .. . .. .... ....... ................................ ··················· ············ 

···· ·········· .......... ····· ·· ...... ... ... ........... .... .... ......... .. .. ·· ······ ··········· ······· .... ······ ··· ···· ...... . 

.... . ... .... ... . .. ..... ... .. . .. .. . .. ... .. . .. .. .. . .. . ... .. .. .. ..... ......... ... ... ..... ·· ··· ····· ······ ······ ···· ······ ...... . 
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Pattern Five 

~I 7~r-7Ll1 7~1 /L 
V l/ V l.,/ 

Description: .... ..... . ..... .... ..... ...... ... .. .... ..... ... .. ..... .. .. ...... ...... ...... . ..... .... .. ..... ... .. .. . .... ... . 

.. .. .. ... ....... ... .. .. ... .. . .. . ... ....... .. ... .. ... ... .. . . .. ' ... .. . .... ... ........ ..... .. .. ... ... ............. ....... ... .... . 

..... ......... . ........... ... .. .... .. .... . .. .. .. . ..... ... .. ······ ···· ····· ·· ······ ············· ···· ····· ... .. ..... ........ ... . 

.... ... ........ ... .... .... ... ... ... .... .. .... ... . ... ...... . ......... ............ ... . ... .. ... ... ... . ..... ...... .. .. .. .. . . .. .. .. 

..... .... .. .... ..... .. .. . . .. . .. . ... .. .. .. ... . ... . ..... ' . . ........ .............. .. ............................................ . 

Pattern Six 

D . . escr1pt1on: .. .. ... ..... .... .. . ..... ... ...... ... .... .... ...... . .... ...... ............. .................................. . 

.... .......... ......... .. ... .. .... ....... ......... .... ... .... ... .. .. ············ ······· ·· ····· .................... .... ... ... . 

... .......... .......... ..... .. ··· ···· ·· ·· ····· · .... .. ....... .. ................................................ ....... .. .... . . 

... . ... ....... .. .... ... ... . .. .. , ............................ .......... .... ····· ·········· .. .. .... ........ .................. . 

1····· ................................................... .. .... ··· ········· ··· ··· · .. ...... ... ... ···· ·· .... ······ ...... .... ,·;, .. 
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eiwern Seven 

~~ 
-
Description: ...... ............... . .. . .. . ........ ...... ... . ............... . ..... . ... ... ............... . ............... . .. . 

,, ............... ........... ................... ..... ............ .... ....... ....... ···· ······ ···· ············ ······ ····· ·· ··· ·· 

···· ·· ..... ··· ········ ......... .. ... .... .. ...... ... .. .. .. .. ··· ·········· ····· ···· ···· ········· ······ ··· ··············· ······· · 

, ..... ···· ···· ········ ................. , ...... ..... .. ...... ... ... .. ....... .. ... ·········· .. ...... ....... ........................ . 

Which patterns did you find the hard to describe? (list their 11w11hers and say why if you can) 

.... ....... . ··· ······ ···· ··· · ...... ... ... . .. ...... ... .... .. ... ..... . · ··· ··· ....... ... .... ... .. ... .... ....... .. .. ....... ..... . . 

.... ,''' ... , ... ...... ..... ... ·· ·· ··· .. ..... ..... , .. ..... .... ... . ' ...... .... ... .... ... ....... ... ... ... ..... ..... ....... .. ..... . 

····· ... .... ................ ······ ·· ···· · .. .. .... ....... ....... ....... .. .. .. ... ... ... ..... ........ .... ... ..... .......... ..... . 

····· ...................................... .. ..................... ···· ·· ··· ··· .. ..... .... ............ .......... .. .... .. .. ... . . 

Which pattems did youjinJ. easy to describe'! (List their 111t!ll/Jers and say wily if you can) 

·· ··· ......... ........ ... ... .. .. .... .... .......... .. ......... .. .. .... ... ······ ... ..... ·· ······· ········ ·· ........ .... ..... ... . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ·.: .. .. 
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