Browsing by Author "Čufar M"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemMagnetic impurity in a one-dimensional few-fermion system(SciPost Foundation, 2023-01-24) Rammelmüller L; Huber D; Čufar M; Brand J; Hammer H-W; Volosniev AGWe present a numerical analysis of spin- ½ fermions in a one-dimensional harmonic potential in the presence of a magnetic point-like impurity at the center of the trap. The model represents a few-body analogue of a magnetic impurity in the vicinity of an swave superconductor. Already for a few particles we find a ground-state level crossing between sectors with different fermion parities. We interpret this crossing as a few-body precursor of a quantum phase transition, which occurs when the impurity “breaks” a Cooper pair. This picture is further corroborated by analyzing density-density correlations in momentum space. Finally, we discuss how the system may be realized with existing cold-atoms platforms.
- ItemPolaron-Depleton Transition in the Yrast Excitations of a One-Dimensional Bose Gas with a Mobile Impurity(MDPI (Basel, Switzerland), 2022-03-01) Yang M; Čufar M; Pahl E; Brand JWe present exact numerical data for the lowest-energy momentum eigenstates (yrast states) of a repulsive spin impurity in a one-dimensional Bose gas using full configuration interaction quantum Monte Carlo (FCIQMC). As a stochastic extension of exact diagonalization, it is well suited for the study of yrast states of a lattice-renormalized model for a quantum gas. Yrast states carry valuable information about the dynamic properties of slow-moving mobile impurities immersed in a many-body system. Based on the energies and the first and second-order correlation functions of yrast states, we identify different dynamical regimes and the transitions between them: The polaron regime, where the impurity’s motion is affected by the Bose gas through a renormalized effective mass; a regime of a gray soliton that is weakly correlated with a stationary impurity, and the depleton regime, where the impurity occupies a dark or gray soliton. Extracting the depleton effective mass reveals a super heavy regime where the magnitude of the (negative) depleton mass exceeds the mass of the finite Bose gas.