Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ahsan M"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    AI-Based Controls for Thermal Comfort in Adaptable Buildings: A Review
    (MDPI AG, 2024-11-04) Ahsan M; Shahzad W; Arif K
    Due to global weather changes and pandemics, people are more likely to spend most of their time in indoor environments. In this regard, indoor environment quality is a very important aspect of occupant well-being, which is often ignored in modern building designs. Based on our research, thermal comfort is one of the essential items in building environments that can improve the mental stability and productivity of the occupants if the building’s indoor environment is created in a way that meets the occupants’ comfort requirements. Buildings nowadays operate on adaptive or stationary models to attain thermal comfort, which is based on Fanger’s model of the Predicted Mean Vote (PMV). Based on the literature review, limited work has been carried out to enhance the quality of the inside environment, and most research work has been devoted to building energy management. Moreover, there have been no definite solutions so far that have the capability to detect the thermal comfort requirements of multiple occupants in real time. Modern buildings tend to operate on predefined set point parameters to control the indoor environment based on the measured room temperature, which can be different from the thermal comfort requirements of the occupants. This paper discusses the limitations and assumptions that are associated with the existing thermal comfort solutions and emphasises the importance of having a real-time solution to address the thermal requirements of occupants.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings