Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ali S"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Low-Cost CO Sensor Calibration Using One Dimensional Convolutional Neural Network
    (MDPI AG, 11/01/2023) Ali S; Alam F; Arif K; Potgieter J-G
    The advent of cost-effective sensors and the rise of the Internet of Things (IoT) presents the opportunity to monitor urban pollution at a high spatio-temporal resolution. However, these sensors suffer from poor accuracy that can be improved through calibration. In this paper, we propose to use One Dimensional Convolutional Neural Network (1DCNN) based calibration for low-cost carbon monoxide sensors and benchmark its performance against several Machine Learning (ML) based calibration techniques. We make use of three large data sets collected by research groups around the world from field-deployed low-cost sensors co-located with accurate reference sensors. Our investigation shows that 1DCNN performs consistently across all datasets. Gradient boosting regression, another ML technique that has not been widely explored for gas sensor calibration, also performs reasonably well. For all datasets, the introduction of temperature and relative humidity data improves the calibration accuracy. Cross-sensitivity to other pollutants can be exploited to improve the accuracy further. This suggests that low-cost sensors should be deployed as a suite or an array to measure covariate factors.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings