SCHEDULED SYSTEM MAINTENANCE – Monday 6 October to Tuesday 7 October 2025. We expect no disruption to services. For further assistance please contact the Library team, library@massey.ac.nz
Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Amanor YJ"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Changes to soil profile carbon and nutrient distribution following pasture renewal with full inversion tillage
    (Taylor and Francis Group, 2024-07-18) Amanor YJ; Hanly JA; Calvelo-Pereira R; Hedley MJ
    Full inversion tillage (FIT) at pasture renewal is a management option aiming to increase carbon stocks in long-term pasture, to achieve carbon neutrality. This study investigated the effects of FIT on carbon and nutrient distribution in the soil profile (0–7.5, 7.5–15, 15–22.5 and 22.5–30 cm depths) as well as nutrient uptake, and subsequent fodder crop and/or pasture yields across three pasture renewal trials (Trials 1 and 3: Alfisol; Trial 2: Andisol). These effects of FIT were assessed against standard tillage treatments (no till, shallow till), and non-renewed pasture within 8–18 months post-tillage. FIT changed soil carbon stratification, causing 16%–46% reduction in topsoil (0–7.5 cm) cation exchange capacity across the three trials. However, nutrient levels after FIT remained within recommended ranges for crop and/or pasture growth, avoiding any yield reductions. Topsoil fertility post-FIT depended on original degree of nutrient stratification in the soil profile. At Trial 1, temporary deficiencies caused by low subsoil P and K soil tests pre-FIT were anticipated and corrected with fertiliser nutrients for the following break crop and resown pasture. We conclude that soil testing the cultivation depth prior to FIT at pasture renewal provides the necessary soil test information to manage yield expectations.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings