Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Anderson RC"

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Bovine dairy complex lipids improve in vitro measures of small intestinal epithelial barrier integrity
    (PLOS, 2018-01-05) Anderson RC; MacGibbon AKH; Haggarty N; Armstrong KM; Roy NC; Brandner JM
    Appropriate intestinal barrier maturation is essential for absorbing nutrients and preventing pathogens and toxins from entering the body. Compared to breast-fed infants, formula-fed infants are more susceptible to barrier dysfunction-associated illnesses. In infant formula dairy lipids are usually replaced with plant lipids. We hypothesised that dairy complex lipids improve in vitro intestinal epithelial barrier integrity. We tested milkfat high in conjugated linoleic acid, beta serum (SureStart™Lipid100), beta serum concentrate (BSC) and a ganglioside-rich fraction (G600). Using Caco-2 cells as a model of the human small intestinal epithelium, we analysed the effects of the ingredients on trans-epithelial electrical resistance (TEER), mannitol flux, and tight junction protein co-localisation. BSC induced a dose-dependent improvement in TEER across unchallenged cell layers, maintained the co-localisation of tight junction proteins in TNFα-challenged cells with increased permeability, and mitigated the TEER-reducing effects of lipopolysaccharide (LPS). G600 also increased TEER across healthy and LPS-challenged cells, but it did not alter the co-location of tight junction proteins in TNFα-challenged cells. SureStart™Lipid100 had similar TEER-increasing effects to BSC when added at twice the concentration (similar lipid concentration). Ultimately, this research aims to contribute to the development of infant formulas supplemented with dairy complex lipids that support infant intestinal barrier maturation.
  • Loading...
    Thumbnail Image
    Item
    Effectiveness of dairy products to protect against cognitive decline in later life: a narrative review
    (Frontiers Media S.A., 2024-06-19) Anderson RC; Alpass FM; Drevenšek, G
    As the world's population ages the prevalence of age-related health concerns is increasing, including neurodegeneration disorders such as mild cognitive impairment, vascular dementia and Alzheimer's disease. Diet is a key modifiable risk factor for the development of neurodegeneration, likely due to gut-brain axis interactions related to neuroinflammation. Analyses of dietary patterns identified dairy as being part of a cognitively healthy diet; however, its contribution to cognitive outcomes is difficult to discern. This narrative review evaluates the literature to determine whether there is sufficient evidence that the consumption of dairy products helps to maintain cognitive function in later life. A search using the terms (dairy OR milk OR cheese OR yogurt OR yogurt) AND ("mild cognitive impairment" OR dementia OR "Alzheimer's disease") identified 796 articles. After screening and sorting, 23 observational studies and 6 intervention studies were identified. The results of the observational studies implied that the relationship between total dairy consumption and cognitive outcomes is inverse U-shaped, with moderate consumption (1-2 servings per day) being the most beneficial. The analysis of the intake of different types of dairy products indicated that fermented products, particularly cheese, were most likely responsible for the observed benefits. The experimental studies all used dairy-derived peptides produced during fermentation as the dietary intervention, and the results indicated that these could be an effective treatment for early-stage cognitive impairment. Further experimental studies with whole dairy products, particularly fermented dairy, are needed to determine whether the regular consumption of these foods should be recommended to maximize the likelihood of healthy cognitive aging.
  • Loading...
    Thumbnail Image
    Item
    Ruminant Milk-Derived Extracellular Vesicles: A Nutritional and Therapeutic Opportunity?
    (MDPI (Basel, Switzerland), 2021-07-22) Ong SL; Blenkiron C; Haines S; Acevedo-Fani A; Leite JAS; Zempleni J; Anderson RC; McCann MJ; Chassard C
    Milk has been shown to contain a specific fraction of extracellular particles that are reported to resist digestion and are purposefully packaged with lipids, proteins, and nucleic acids to exert specific biological effects. These findings suggest that these particles may have a role in the quality of infant nutrition, particularly in the early phase of life when many of the foundations of an infant's potential for health and overall wellness are established. However, much of the current research focuses on human or cow milk only, and there is a knowledge gap in how milk from other species, which may be more commonly consumed in different regions, could also have these reported biological effects. Our review provides a summary of the studies into the extracellular particle fraction of milk from a wider range of ruminants and pseudo-ruminants, focusing on how this fraction is isolated and characterised, the stability and uptake of the fraction, and the reported biological effects of these fractions in a range of model systems. As the individual composition of milk from different species is known to differ, we propose that the extracellular particle fraction of milk from non-traditional and minority species may also have important and distinct biological properties that warrant further study.
  • Loading...
    Thumbnail Image
    Item
    The Role of Segmented Filamentous Bacteria in Immune Barrier Maturation of the Small Intestine at Weaning.
    (Frontiers Media S.A., 2021-11-18) Oemcke LA; Anderson RC; Altermann E; Roy NC; McNabb WC; De Los Reyes-Gavilan CG
    The microbiological, physical, chemical, and immunological barriers of the gastrointestinal tract (GIT) begin developing in utero and finish maturing postnatally. Maturation of these barriers is essential for the proper functioning of the GIT. Maturation, particularly of the immunological barrier, involves stimulation by bacteria. Segmented filamentous bacteria (SFB) which are anaerobic, spore-forming commensals have been linked to immune activation. The presence and changes in SFB abundance have been positively correlated to immune markers (cytokines and immunoglobulins) in the rat ileum and stool samples, pre- and post-weaning. The abundance of SFB in infant stool increases from 6 months, peaks around 12 months and plateaus 25 months post-weaning. Changes in SFB abundance at these times correlate positively and negatively with the production of interleukin 17 (IL 17) and immunoglobulin A (IgA), respectively, indicating involvement in immune function and maturation. Additionally, the peak in SFB abundance when a human milk diet was complemented by solid foods hints at a diet effect. SFB genome analysis revealed enzymes involved in metabolic pathways for survival, growth and development, host mucosal attachment and substrate acquisition. This narrative review discusses the current knowledge of SFB and their suggested effects on the small intestine immune system. Referencing the published genomes of rat and mouse SFB, the use of food substrates to modulate SFB abundance is proposed while considering their effects on other microbes. Changes in the immune response caused by the interaction of food substrate with SFB may provide insight into their role in infant immunological barrier maturation.
  • Loading...
    Thumbnail Image
    Item
    Using meta-analysis to understand the impacts of dietary protein and fat content on the composition of fecal microbiota of domestic dogs (Canis lupus familiaris): A pilot study
    (John Wiley and Sons Ltd, 2024-04) Phimister FD; Anderson RC; Thomas DG; Farquhar MJ; Maclean P; Jauregui R; Young W; Butowski CF; Bermingham EN
    The interplay between diet and fecal microbiota composition is garnering increased interest across various host species, including domestic dogs. While the influence of dietary macronutrients and their associated microbial communities have been extensively reviewed, these reviews are descriptive and do not account for differences in microbial community analysis, nor do they standardize macronutrient content across studies. To address this, a meta-analysis was performed to assess the impact of dietary crude protein ("protein") and dietary crude fat ("fat") on the fecal microbiota composition in healthy dogs. Sixteen publications met the eligibility criteria for the meta-analysis, yielding a final data set of 314 dogs. Diets were classed as low, moderate, high, or supra in terms of protein or fat content. Sequence data from each publication were retrieved from public databases and reanalyzed using consistent bioinformatic pipelines. Analysis of community diversity indices and unsupervised clustering of the data with principal coordinate analysis revealed a small effect size and complete overlap between protein and fat levels at the overall community level. Supervised clustering through random forest analysis and partial least squares-discriminant analysis indicated alterations in the fecal microbiota composition at a more individual taxonomic level, corresponding to the levels of protein or fat. The Prevotellaceae Ga6A1 group and Enterococcus were associated with increasing levels of protein, while Allobaculum and Clostridium sensu stricto 13 were associated with increasing levels of fat. Interestingly, the random forest analyses revealed that Sharpea, despite its low relative abundance in the dog's fecal microbiome, was primarily responsible for the separation of the microbiome for both protein and fat. Future research should focus on validating and understanding the functional roles of these relatively low-abundant genera.
  • Loading...
    Thumbnail Image
    Item
    Whole tissue homogenization preferable to mucosal scraping in determining the temporal profile of segmented filamentous bacteria in the ileum of weanling rats
    (Microbiology Society, 2021-03-23) Oemcke LA; Anderson RC; Rakonjac J; McNabb WC; Roy NC
    Segmented filamentous bacteria (SFB) are thought to play a role in small intestine immunological maturation. Studies in weanling mice have shown a positive correlation between ileal SFB abundance and plasma and faecal interleukin 17 (IL-17) and immunoglobulin A (IgA) concentrations. Although the first observation of SFB presence was reported in rats, most studies use mice. The size of the mouse ileum is a limitation whereas the rat could be a suitable alternative for sufficient samples. Changes in SFB abundance over time in rats were hypothesized to follow the pattern reported in mice and infants. We characterized the profile of SFB colonization in the ileum tissue and contents and its correlation with two immune markers of gastrointestinal tract (GIT) maturation. We also compared two published ileum collection techniques to determine which yields data on SFB abundance with least variability. Whole ileal tissue and ileal mucosal scrapings were collected from 20- to 32-day-old Sprague-Dawley rats. SFB abundance was quantified from proximal, middle and distal ileal tissues, contents and faeces by quantitative PCR using SFB-specific primers. Antibody-specific ELISAs were used to determine IL-17 and IgA concentrations. Significant differences in SFB abundance were observed from whole and scraped tissues peaking at day 22. Variability in whole ileum data was less, favouring it as a better collection technique. A similar pattern of SFB abundance was observed in ileum contents and faeces peaking at day 24, suggesting faeces can be a proxy for ileal SFB abundance. SFB abundance at day 26 was higher in females than males across all samples. There were significant differences in IgA concentration between days 20, 30 and 32 and none in IL-17 concentration, which was different from reports in mice and infants.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings