Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bagheri H"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Fabrication and characterization of active gelatin-based films integrated with nanocellulose-stabilized Pickering emulsion containing Oliveria Decumbens Vent. essential oil
    (Elsevier Ltd, 2024-10-01) Fahim H; Bagheri H; Motamedzadegan A; Razi SM; Rashidinejad A
    Stabilizing essential oils (EOs) within biodegradable matrices to create homogeneous and stable films with desirable properties is challenging due to the hydrophobic nature of EOs, which hinders their uniform infusion into the matrix. In this study, we investigated the feasibility of creating active films made of gelatin, infused with nanocellulose-stabilized Pickering emulsion (PE) containing Oliveria Decumbens Vent. essential oil (OEO). The Pickering emulsion effectively stabilized the 50% v/v of OEO, which was subsequently incorporated into a gelatin film at 0, 3, 5, 7, and 9% v/v, to produce active films. FTIR data showed that the OEO-PE was physically trapped in the film matrix through hydrogen bonds, which was also verified by SEM micrographs. The addition of OEO-PE notably changed the films' mechanical properties, leading to reduced tensile strength and enhanced elongation (P < 0.05) with no significant impact on their water vapor permeability. The incorporation of OEO endowed the film matrix with high antioxidant and antibacterial activity against E. coli and S. aureus. Thermal analysis using differential scanning calorimetry showed a 36–171 °C endothermic peak in all films, due to water evaporation and melting. The gelatin film containing 9% OEO-PE exhibited superior physical properties, enhanced water resistance, and excellent antibacterial and antioxidant activity.
  • Loading...
    Thumbnail Image
    Item
    Targeted dairy fortification: leveraging bioactive compounds to enhance nutritional value
    (Taylor and Francis Group, 2025-06-30) Bagheri H; Akhavan-Mahdavi S; Sarabi-Aghdam V; Mirarab Razi S; Singh Beniwal A; Rashidinejad A
    Dairy products, rich in nutrients, are crucial for human health and disease prevention. Recent trends focus on enhancing their nutritional value by fortifying them with bioactive compounds from plant and animal sources. Scientific evidence suggests these compounds can improve public health by potentially treating and preventing diseases, including cancer. This systematic review discusses advances in dairy product fortification with health-promoting compounds, highlighting their role in correcting nutritional deficiencies and reducing chronic disease risk. Innovative delivery systems are being developed to improve the stability and functionality of these compounds in fortified dairy products. Despite challenges in maintaining the physical, textural, and sensory qualities of dairy products, fortification is a promising public health strategy. The review calls for interdisciplinary research to better understand the bioavailability, effectiveness, and long-term health impacts of bioactive compounds in dairy foods. Such research could inform best practices and policy recommendations. Using dairy products as carriers for bioactive compounds can significantly improve nutritional status and reduce the global burden of chronic diseases, making it a strategic approach to public health nutrition. This review cautiously evaluates current evidence, particularly regarding chronic disease prevention, and emphasizes the need for further research on specific populations, such as children and the elderly.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings