Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bazai SU"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Scalable, high-performance, and generalized subtree data anonymization approach for Apache Spark
    (MDPI (Basel, Switzerland), 2021-03-03) Bazai SU; Jang-Jaccard J; Alavizadeh H; Guitart J
    Data anonymization strategies such as subtree generalization have been hailed as techniques that provide a more efficient generalization strategy compared to full-tree generalization counterparts. Many subtree-based generalizations strategies (e.g., top-down, bottom-up, and hybrid) have been implemented on the MapReduce platform to take advantage of scalability and parallelism. However, MapReduce inherent lack support for iteration intensive algorithm implementation such as subtree generalization. This paper proposes Distributed Dataset (RDD)-based implementation for a subtree-based data anonymization technique for Apache Spark to address the issues associated with MapReduce-based counterparts. We describe our RDDs-based approach that offers effective partition management, improved memory usage that uses cache for frequently referenced intermediate values, and enhanced iteration support. Our experimental results provide high performance compared to the existing state-of-the-art privacy preserving approaches and ensure data utility and privacy levels required for any competitive data anonymization techniques.

Copyright © Massey University  |  DSpace software copyright © 2002-2026 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify