Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Biersteker, Ronald John"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    A computer integrated manufacturing system for small scale production of electronic units : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Production Technology at Massey University
    (Massey University, 1995) Biersteker, Ronald John
    This research project concerns the design of a rapid response, computer integrated Printed Circuit Board (PCB) Component Assembly System (CAS). The CAS system forms an integral part of a commercially viable Manufacturing Pilot Plant (MPP) for the design, production, and assembly of high quality special purpose PCBs in low volumes. The design of the CAS system begins with the identification of the characteristics and deficiencies of conventional low volume, high variety PCB manufacturing systems. Next, a vision for the MPP as a whole is presented, with particular emphasis on the CAS system. A Generic Manufacturing System Design Methodology (GDM) is then derived, and is applied to the design of the CAS system. Through the GDM a working CAS system is constructed, based around a central CAS Master and 3 assembly workstations. The working CAS system is then analysed through a comparison with a typical conventional low volume manual assembly system. The results support the expectation of superior performance from the envisioned system. Finally, areas requiring further work are identified.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify