Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cai Z"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Two-State Dynamic Decomposition-Based Evolutionary Algorithm for Handling Many-Objective Optimization Problems
    (MDPI (Basel, Switzerland), 2023-01-17) Xing L; Li J; Cai Z; Hou F; Pan L; Cui Z; Garg H
    Decomposition-based many-objective evolutionary algorithms (D-MaOEAs) are brilliant at keeping population diversity for predefined reference vectors or points. However, studies indicate that the performance of an D-MaOEA strongly depends on the similarity between the shape of the reference vectors (points) and that of the PF (a set of Pareto-optimal solutions symbolizing balance among objectives of many-objective optimization problems) of the many-objective problem (MaOP). Generally, MaOPs with expected PFs are not realistic. Consequently, the inevitable weak similarity results in many inactive subspaces, creating huge difficulties for maintaining diversity. To address these issues, we propose a two-state method to judge the decomposition status according to the number of inactive reference vectors. Then, two novel reference vector adjustment strategies, set as parts of the environmental selection approach, are tailored for the two states to delete inactive reference vectors and add new active reference vectors, respectively, in order to ensure that the reference vectors are as close as possible to the PF of the optimization problem. Based on the above strategies and an efficient convergence performance indicator, an active reference vector-based two-state dynamic decomposition-base MaOEA, referred to as ART-DMaOEA, is developed in this paper. Extensive experiments were conducted on ART-DMaOEA and five state-of-the-art MaOEAs on MaF1-MaF9 and WFG1-WFG9, and the comparative results show that ART-DMaOEA has the most competitive overall performance.
  • Loading...
    Thumbnail Image
    Item
    Decision variable contribution based adaptive mechanism for evolutionary multi-objective cloud workflow scheduling
    (Springer Nature, 2023-06-29) Li J; Xing L; Zhong W; Cai Z; Hou F
    Workflow scheduling is vital to simultaneously minimize execution cost and makespan for cloud platforms since data dependencies among large-scale workflow tasks and cloud workflow scheduling problem involve large-scale interactive decision variables. So far, the cooperative coevolution approach poses competitive superiority in resolving large-scale problems by transforming the original problems into a series of small-scale subproblems. However, the static transformation mechanisms cannot separate interactive decision variables, whereas the random transformation mechanisms encounter low efficiency. To tackle these issues, this paper suggests a decision-variable-contribution-based adaptive evolutionary cloud workflow scheduling approach (VCAES for short). To be specific, the VCAES includes a new estimation method to quantify the contribution of each decision variable to the population advancement in terms of both convergence and diversity, and dynamically classifies the decision variables according to their contributions during the previous iterations. Moreover, the VCAES includes a mechanism to adaptively allocate evolution opportunities to each constructed group of decision variables. Thus, the decision variables with a strong impact on population advancement are assigned more evolution opportunities to accelerate population to approximate the Pareto-optimal fronts. To verify the effectiveness of the proposed VCAES, we carry out extensive numerical experiments on real-world workflows and cloud platforms to compare it with four representative algorithms. The numerical results demonstrate the superiority of the VCAES in resolving cloud workflow scheduling problems.
  • Loading...
    Thumbnail Image
    Item
    Evolutionary Optimization of Energy Consumption and Makespan of Workflow Execution in Clouds
    (MDPI (Basel, Switzerland), 2023-04-30) Xing L; Li J; Cai Z; Hou F; Sanz JA
    Making sound trade-offs between the energy consumption and the makespan of workflow execution in cloud platforms remains a significant but challenging issue. So far, some works balance workflows’ energy consumption and makespan by adopting multi-objective evolutionary algorithms, but they often regard this as a black-box problem, resulting in the low efficiency of the evolutionary search. To compensate for the shortcomings of existing works, this paper mathematically formulates the cloud workflow scheduling for an infrastructure-as-a-service (IaaS) platform as a multi-objective optimization problem. Then, this paper tailors a knowledge-driven energy- and makespan-aware workflow scheduling algorithm, namely EMWSA. Specifically, a critical task adjustment-based local search strategy is proposed to intelligently adjust some critical tasks to the same resource of their successor tasks, striving to simultaneously reduce workflows’ energy consumption and makespan. Further, an idle gap reuse strategy is proposed to search the optimal energy consumption of each non-critical task without affecting the operation of other tasks, so as to further reduce energy consumption. Finally, in the context of real-world workflows and cloud platforms, we carry out comparative experiments to verify the superiority of the proposed EMWSA by significantly outperforming 4 representative baselines on 19 out of 20 workflow instances.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings