Browsing by Author "Cao Y"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemCritical power is a key threshold determining the magnitude of post-exercise hypotension in non-hypertensive young males.(Wiley & Sons Ltd on behalf of The Physiological Society, 2023-09-15) Lei T-H; Wang I-L; Chen Y-M; Liu X-H; Fujii N; Koga S; Perry B; Mundel T; Wang F; Cao Y; Dobashi K; Kondo N; Li H-Y; Goulding RP; Poole DThe effect of different exercise intensities on the magnitude of post-exercise hypotension has not been rigorously clarified with respect to the metabolic thresholds that partition discrete exercise intensity domains (i.e., critical power and the gas exchange threshold (GET)). We hypothesized that the magnitude of post-exercise hypotension would be greater following isocaloric exercise performed above versus below critical power. Twelve non-hypertensive men completed a ramp incremental exercise test to determine maximal oxygen uptake and the GET, followed by five exhaustive constant load trials to determine critical power and W' (work available above critical power). Subsequently, criterion trials were performed at four discrete intensities matched for total work performed (i.e., isocaloric) to determine the impact of exercise intensity on post-exercise hypotension: 10% above critical power (10% > CP), 10% below critical power (10% < CP), 10% above GET (10% > GET) and 10% below GET (10% < GET). The post-exercise decrease (i.e., the minimum post-exercise values) in mean arterial (10% > CP: -12.7 ± 8.3 vs. 10% < CP: v3.5 ± 2.9 mmHg), diastolic (10% > CP: -9.6 ± 9.8 vs. 10% < CP: -1.4 ± 5.0 mmHg) and systolic (10% > CP: -23.8 ± 7.0 vs. 10% < CP: -9.9 ± 4.3 mmHg) blood pressures were greater following exercise performed 10% > CP compared to all other trials (all P < 0.01). No effects of exercise intensity on the magnitude of post-exercise hypotension were observed during exercise performed below critical power (all P > 0.05). Critical power represents a threshold above which the magnitude of post-exercise hypotension is greatly augmented. NEW FINDINGS: What is the central questions of this study? What is the influence of exercise intensity on the magnitude of post-exercise hypotension with respect to metabolic thresholds? What is the main finding and its importance? The magnitude of post-exercise hypotension is greatly increased following exercise performed above critical power. However, below critical power, there was no clear effect of exercise intensity on the magnitude of post-exercise hypotension.
- ItemEffect of Caffeinated Chewing Gum on Maximal Strength, Muscular Power, and Muscle Recruitment During Bench Press and Back Squat Exercises(MDPI (Basel, Switzerland), 2025-07-28) Ding L; Liu J; Ma Y; Lei T-H; Barnes M; Guo L; Chen B; Cao Y; Girard OBackground/Objectives: This study aims to investigate the effects of caffeinated chewing gum on maximal strength, muscular power, and neural drive to the prime movers during bench press and back squat in resistance-trained men. Methods: Sixteen resistance-trained males participated in a double-blind, randomized trial, chewing either caffeinated gum (4 mg/kg) or placebo gum on two separate occasions, seven days apart. After chewing for 5 min, participants performed a maximal strength test followed by muscular power assessments at 25%, 50%, 75%, and 90% of their one-repetition maximum (1RM), completing with 3, 2, 1, and 1 repetition (s), respectively, for bench press and back squat. Surface electromyography data were recorded for each repetition. Results: Caffeinated gum did not significantly improve one-repetition maximum (1RM) for bench press (p > 0.05), but increased mean frequency (MF) and median frequency (MDF) in anterior deltoid, pectoralis major, and biceps brachii (all p < 0.05) compared to placebo. For back squat, 1RM increased with caffeinated gum, along with higher MF and MDF in vastus medialis (all p < 0.05). Caffeinated gum also improved mean and peak velocities, and mean and peak power outputs at 25–75% 1RM during the bench press (all p < 0.05), along with elevated MDF in pectoralis major and biceps brachii (all p < 0.05). Similar improvements were seen in mean and peak velocities during the back squat at 25–90% 1RM (all p < 0.05), along with higher MF and MDF in vastus medialis and increased normalized root mean square activity in gluteus maximus (all p < 0.05). Conclusions: Caffeinated chewing gum (4 mg/kg) enhanced muscular power (25–75% 1RM) in the bench press and improved maximal strength and muscular power (25–90% 1RM) in the back squat by increasing muscle recruitment in resistance-trained men.
- ItemGenotoxic colibactin mutational signature in colorectal cancer is associated with clinicopathological features, specific genomic alterations and better survival.(2023-03-12) Georgeson P; Steinfelder RS; Harrison TA; Pope BJ; Zaidi SH; Qu C; Lin Y; Joo JE; Mahmood K; Clendenning M; Walker R; Aglago EK; Berndt SI; Brenner H; Campbell PT; Cao Y; Chan AT; Chang-Claude J; Dimou N; Doheny KF; Drew DA; Figueiredo JC; French AJ; Gallinger S; Giannakis M; Giles GG; Goode EL; Gruber SB; Gsur A; Gunter MJ; Harlid S; Hoffmeister M; Hsu L; Huang W-Y; Huyghe JR; Manson JE; Moreno V; Murphy N; Nassir R; Newton CC; Nowak JA; Obón-Santacana M; Ogino S; Pai RK; Papadimitrou N; Potter JD; Schoen RE; Song M; Sun W; Toland AE; Trinh QM; Tsilidis K; Ugai T; Um CY; Macrae FA; Rosty C; Hudson TJ; Winship IM; Phipps AI; Jenkins MA; Peters U; Buchanan DD
- ItemIdentifying colorectal cancer caused by biallelic MUTYH pathogenic variants using tumor mutational signatures(Springer Nature Limited, 6/06/2022) Georgeson P; Harrison TA; Pope BJ; Zaidi SH; Qu C; Steinfelder RS; Lin Y; Joo JE; Mahmood K; Clendenning M; Walker R; Amitay EL; Berndt SI; Brenner H; Campbell PT; Cao Y; Chan AT; Chang-Claude J; Doheny KF; Drew DA; Figueiredo JC; French AJ; Gallinger S; Giannakis M; Giles GG; Gsur A; Gunter MJ; Hoffmeister M; Hsu L; Huang W-Y; Limburg P; Manson JE; Moreno V; Nassir R; Nowak JA; Obón-Santacana M; Ogino S; Phipps AI; Potter JD; Schoen RE; Sun W; Toland AE; Trinh QM; Ugai T; Macrae FA; Rosty C; Hudson TJ; Jenkins MA; Thibodeau SN; Winship IM; Peters U; Buchanan DDCarriers of germline biallelic pathogenic variants in the MUTYH gene have a high risk of colorectal cancer. We test 5649 colorectal cancers to evaluate the discriminatory potential of a tumor mutational signature specific to MUTYH for identifying biallelic carriers and classifying variants of uncertain clinical significance (VUS). Using a tumor and matched germline targeted multi-gene panel approach, our classifier identifies all biallelic MUTYH carriers and all known non-carriers in an independent test set of 3019 colorectal cancers (accuracy = 100% (95% confidence interval 99.87-100%)). All monoallelic MUTYH carriers are classified with the non-MUTYH carriers. The classifier provides evidence for a pathogenic classification for two VUS and a benign classification for five VUS. Somatic hotspot mutations KRAS p.G12C and PIK3CA p.Q546K are associated with colorectal cancers from biallelic MUTYH carriers compared with non-carriers (p = 2 × 10-23 and p = 6 × 10-11, respectively). Here, we demonstrate the potential application of mutational signatures to tumor sequencing workflows to improve the identification of biallelic MUTYH carriers.
