Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Carman J"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Forecasting Eruptions at Poorly Known Volcanoes Using Analogs and Multivariate Renewal Processes
    (John Wiley and Sons, Inc on behalf of the American Geophysical Union, 2022-06-28) Wang T; Bebbington M; Cronin S; Carman J
    Forecasting future destructive eruptions from re-awakening volcanoes remains a challenge, mainly due to a lack of previous event data. This sparks a search for similar volcanoes to provide additional information, especially those with better compiled and understood event records. However, we show that some of the most obviously geologically comparable volcanoes have differing statistical occurrence patterns. Using such matches produces large forecasting uncertainties. We created a statistical tool to identify and test the compatibility of potential analogue volcanoes based on repose-time characteristics from world-wide datasets. Selecting analogue volcanoes with compatible behavior for factors being forecast, such as repose time, significantly reduces forecasting uncertainties. Applying this tool to Tongariro volcano (NZ), there is a 5% probability for a Volcanic Explosivity Index (VEI) ≥ 3 explosive eruption in the next 50 years. Using pre-historic geological records of a smaller available set of analogs, we forecast a 1% probability of a VEI ≥ 4 eruption in the next 50 years.

Copyright © Massey University  |  DSpace software copyright © 2002-2026 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify