Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Carnegie DA"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Interactive Sound Synthesis Mediated Through Computer Networks
    (eContact!, 1/08/2014) He J; Christopher K; Kapur A; Carnegie DA
    The digital age is continuously redefining the bounds of interaction. This has never been more apparent in the realm of sonic arts, where the idea of network interactivity is becoming increasingly ubiquitous. After all, art is essentially born of the interaction between people and the phenomenon around them. Interactivity is a fundamental element of music performance, whether it is amongst performers, the performers and the audience, or the performers and the work itself. Since the era of The League of Automatic Music Composers and The Hub (Gresham-Lancaster 1998), composers, musicians and music technologists have explored the paradigm of computer networks as the medium of interactivity in music systems (Barbosa 2003; Traub 2005; Mills 2010). Motivated in part by research into the microsonic components of sound creation, the authors introduce a method in which sound is generated by the feedback of an impulse across a network.
  • Loading...
    Thumbnail Image
    Item
    Parametrically-Dense Motion Sensing Devices and Robotic Musical Instruments
    (International Computer Music Association, 1/08/2016) He J; Murphy J; Kapur A; Carnegie DA
    The proliferation and ubiquity of sensor, actuator and microcontroller technology in recent years have propelled contemporary robotic musical instruments (RMIs) and digital music controllers to become more parametrically dense than their predecessors. Prior projects have focused on creating interaction strategies for relatively low degrees-of-freedom input and output schemes. Drawing upon prior research, this paper explores schemes for interaction between parametrically-dense motion-based control devices and contemporary parametrically-dense robotic musical instruments. The details of two interaction schemes are presented: those consisting of one-to-one control (allowing the actions of a performer to directly affect an instrument) and those consisting of a recognition system wherein user-created gestures result in output patterns from the robotic musical instrument. The implementation of the interaction schemes is described, and a performance utilizing these schemes is presented.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings