Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Chagué C"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Tsunami or storm deposit? A late Holocene sedimentary record from Swamp Bay, Rangitoto ki te Tonga/D’Urville Island, Aotearoa–New Zealand
    (Taylor and Francis Group, 2023) King DN; Clark K; Chagué C; Li X; Lane E; McFadgen BG; Hippolite J; Meihana P; Wilson B; Dobson J; Geiger P; Robb H; Hikuroa D; Williams S; Morgenstern R; Scheele F
    Informed by Māori oral histories that refer to past catastrophic marine inundations, multi-proxy analysis of stratigraphic records from Swamp Bay, Rangitoto ki te Tonga (D’Urville Island) shows evidence of an anomalous deposit extending some 160 m inland. The deposit includes two distinct lithofacies. The lower sand unit is inferred to have been transported from the marine environment, with corresponding increases in the percentages of benthic marine and brackish–marine diatoms, and geochemical properties indicative of sudden changes in environmental conditions. Radiocarbon dating indicates the deposit formation is less than 402 yrs BP, and pollen indicates it is unlikely to be younger than 1870 CE. Core stratigraphy age models and co-seismic chronologies point to the marine unit most likely being emplaced by tsunami transport associated with rupture of the Wairarapa Fault in 1855 CE. The overlying unit of gravel and silt is inferred to be fluvial deposit and slope-wash from the surrounding hills, loosened by ground-shaking following the earthquake. These findings indicate the 1855 CE earthquake may have been more complex than previously thought and, or, available tsunami modelling does not fully capture the local complexities in bathymetry and topography that can cause hazardous and localized tsunami amplification in embayments like Swamp Bay.

Copyright © Massey University  |  DSpace software copyright © 2002-2026 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify