Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Chang, Sharon Shu-jen"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Characterisation of aerobic biotreatment of meat plant effluent : a thesis presented in partial fulfilment of the requirements for the degree of Master of Philosophy in Environmental Engineering, Institute of Technology and Engineering, Massey University
    (Massey University, 1999) Chang, Sharon Shu-jen
    This study investigated the bio-kinetics of a meat-processing wastewater in an activated sludge system. The main pollutant loading of the wastewater under investigation was characterized as 1350 mgCOD/L, 70 mgNH4-N/L, and 127 mgTKN/L in average. Ihe respirometric method and aerobic batch methods were used to evaluate the biodegradability and the kinetics of carbon removal and nitrification of meat-processing wastewater in an activated sludge system. The readily biodegradable COD accounts for 15~17 % of the COD in meat-processing wastewater, while the inert portion, including soluble and particulate, accounts for another 10% of the COD. Approximately, 1/3 of the meat-processing wastewater composition is in soluble/fine colloidal form and the remaining 2/3 is in particulate form. For heterotrophos growing on soluble meat-processing wastewater, the determined values of kinetic constants for carbon removal were 0.63 mgcellCOD/mgCOD for the observed COD based yield coefficient (YH), 0.40 mgVSS/mgCOD for the observed mass (VSS) based yield coefficient (Y O), 1.4 for COD/VSS ratio, 3.3 day-1 for the maximum specific growth rate (μH MAX), and 10 mgCOD/L for the half-saturation constant (Ks). The death-regeneration decay coefficient of heterotrophos (bH) was 0.38 ~ 0.49 d-1. For heterotrophos growing on unfiltered meat-processing wastewater, the relationship between So/Xo and the observed corresponding specific growth rate (μ, d-1) was found to fit a Monod type function. The maximum specific growth rate of heterotrophos in unfiltered meat-processing wastewater was determined as 9 d-1, while the half-saturation constant was found to be 22. In regard of nitrification, the maximum specific growth rate of autotrophos in soluble meat-processing wastewater was 0.56 ~ 0.71 d-1.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify