Browsing by Author "Chaudhary A"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemDeveloping One Health surveillance systems(Elsevier B.V., 2023-12-01) Hayman DTS; Adisasmito WB; Almuhairi S; Behravesh CB; Bilivogui P; Bukachi SA; Casas N; Becerra NC; Charron DF; Chaudhary A; Ciacci Zanella JR; Cunningham AA; Dar O; Debnath N; Dungu B; Farag E; Gao GF; Khaitsa M; Machalaba C; Mackenzie JS; Markotter W; Mettenleiter TC; Morand S; Smolenskiy V; Zhou L; Koopmans MThe health of humans, domestic and wild animals, plants, and the environment are inter-dependent. Global anthropogenic change is a key driver of disease emergence and spread and leads to biodiversity loss and ecosystem function degradation, which are themselves drivers of disease emergence. Pathogen spill-over events and subsequent disease outbreaks, including pandemics, in humans, animals and plants may arise when factors driving disease emergence and spread converge. One Health is an integrated approach that aims to sustainably balance and optimize human, animal and ecosystem health. Conventional disease surveillance has been siloed by sectors, with separate systems addressing the health of humans, domestic animals, cultivated plants, wildlife and the environment. One Health surveillance should include integrated surveillance for known and unknown pathogens, but combined with this more traditional disease-based surveillance, it also must include surveillance of drivers of disease emergence to improve prevention and mitigation of spill-over events. Here, we outline such an approach, including the characteristics and components required to overcome barriers and to optimize an integrated One Health surveillance system.
- ItemOne Health: A new definition for a sustainable and healthy future(PLOS, 2022-06-23) One Health High-Level Expert Panel (OHHLEP); Adisasmito WB; Almuhairi S; Behravesh CB; Bilivogui P; Bukachi SA; Casas N; Cediel Becerra N; Charron DF; Chaudhary A; Ciacci Zanella JR; Cunningham AA; Dar O; Debnath N; Dungu B; Farag E; Gao GF; Hayman DTS; Khaitsa M; Koopmans MPG; Machalaba C; Mackenzie JS; Markotter W; Mettenleiter TC; Morand S; Smolenskiy V; Zhou L; Dvorin JD
- ItemPrevention of zoonotic spillover: From relying on response to reducing the risk at source.(Public Library of Science (PLoS), 2023-10-05) Authored by the members of the One Health High-Level Expert Panel (OHHLEP); Markotter W; Mettenleiter TC; Adisasmito WB; Almuhairi S; Barton Behravesh C; Bilivogui P; Bukachi SA; Casas N; Cediel Becerra N; Charron DF; Chaudhary A; Ciacci Zanella JR; Cunningham AA; Dar O; Debnath N; Dungu B; Farag E; Gao GF; Hayman DTS; Khaitsa M; Koopmans MPG; Machalaba C; Mackenzie JS; Morand S; Smolenskiy V; Zhou L; Dvorin JDThe devastating impact of Coronavirus Disease 2019 (COVID-19) on human health globally has prompted extensive discussions on how to better prepare for and safeguard against the next pandemic. Zoonotic spillover of pathogens from animals to humans is recognized as the predominant cause of emerging infectious diseases and as the primary cause of recent pandemics [1]. This spillover risk is increased by a range of factors (called drivers) that impact the nature, frequency, and intensity of contact between humans and wild animals. Many of these drivers are related to human impact, for example, deforestation and changes in land use and agricultural practices. While it is clear that the triad of prevention-preparedness-response (P-P-R) is highly relevant, there is much discussion on which of these 3 strategic activities in the field of emerging infectious disease should be prioritized and how to optimally target resources. For this, it is important to understand the scope of the respective activity and the consequences of prioritization.