Browsing by Author "Chen W"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAuthor Correction: Dense sampling of bird diversity increases power of comparative genomics.(2021-04) Feng S; Stiller J; Deng Y; Armstrong J; Fang Q; Reeve AH; Xie D; Chen G; Guo C; Faircloth BC; Petersen B; Wang Z; Zhou Q; Diekhans M; Chen W; Andreu-Sánchez S; Margaryan A; Howard JT; Parent C; Pacheco G; Sinding M-HS; Puetz L; Cavill E; Ribeiro ÂM; Eckhart L; Fjeldså J; Hosner PA; Brumfield RT; Christidis L; Bertelsen MF; Sicheritz-Ponten T; Tietze DT; Robertson BC; Song G; Borgia G; Claramunt S; Lovette IJ; Cowen SJ; Njoroge P; Dumbacher JP; Ryder OA; Fuchs J; Bunce M; Burt DW; Cracraft J; Meng G; Hackett SJ; Ryan PG; Jønsson KA; Jamieson IG; da Fonseca RR; Braun EL; Houde P; Mirarab S; Suh A; Hansson B; Ponnikas S; Sigeman H; Stervander M; Frandsen PB; van der Zwan H; van der Sluis R; Visser C; Balakrishnan CN; Clark AG; Fitzpatrick JW; Bowman R; Chen N; Cloutier A; Sackton TB; Edwards SV; Foote DJ; Shakya SB; Sheldon FH; Vignal A; Soares AER; Shapiro B; González-Solís J; Ferrer-Obiol J; Rozas J; Riutort M; Tigano A; Friesen V; Dalén L; Urrutia AO; Székely T; Liu Y; Campana MG; Corvelo A; Fleischer RC; Rutherford KM; Gemmell NJ; Dussex N; Mouritsen H; Thiele N; Delmore K; Liedvogel M; Franke A; Hoeppner MP; Krone O; Fudickar AM; Milá B; Ketterson ED; Fidler AE; Friis G; Parody-Merino ÁM; Battley PF; Cox MP; Lima NCB; Prosdocimi F; Parchman TL; Schlinger BA; Loiselle BA; Blake JG; Lim HC; Day LB; Fuxjager MJ; Baldwin MW; Braun MJ; Wirthlin M; Dikow RB; Ryder TB; Camenisch G; Keller LF; DaCosta JM; Hauber ME; Louder MIM; Witt CC; McGuire JA; Mudge J; Megna LC; Carling MD; Wang B; Taylor SA; Del-Rio G; Aleixo A; Vasconcelos ATR; Mello CV; Weir JT; Haussler D; Li Q; Yang H; Wang J; Lei F; Rahbek C; Gilbert MTP; Graves GR; Jarvis ED; Paten B; Zhang GIn Supplementary Table 1 of this Article, 23 samples (B10K-DU-029-32, B10K-DU-029-33, B10K-DU-029-36 to B10K-DU-029-44, B10K-DU- 029-46, B10K-DU-029-47, B10K-DU-029-49 to B10K-DU-029-53, B10K-DU- 029-75 to B10K-DU-029-77, B10K-DU-029-80, and B10K-DU-030-03; styled in boldface in the revised table) were assigned to the incorrect institution. Supplementary Table 1 has been amended to reflect the correct source institution for these samples, and associated data (tissue, museum ID/source specimen ID, site, state/province, latitude, longitude, date collected and sex) have been updated accordingly. The original table is provided as Supplementary Information to this Amendment, and the original Article has been corrected online.
- ItemLipidomics of Brain Tissues in Rats Fed Human Milk from Chinese Mothers or Commercial Infant Formula(MDPI (Basel, Switzerland), 2019-10-28) Su M; Subbaraj AK; Fraser K; Qi X; Jia H; Chen W; Gomes Reis M; Agnew M; Day L; Roy NC; Young WHolistic benefits of human milk to infants, particularly brain development and cognitive behavior, have stipulated that infant formula be tailored in composition like human milk. However, the composition of human milk, especially lipids, and their effects on brain development is complex and not fully elucidated. We evaluated brain lipidome profiles in weanling rats fed human milk or infant formula using non-targeted UHPLC-MS techniques. We also compared the lipid composition of human milk and infant formula using conventional GC-FID and HPLC-ELSD techniques. The sphingomyelin class of lipids was significantly higher in brains of rats fed human milk. Lipid species mainly comprising saturated or mono-unsaturated C18 fatty acids contributed significantly higher percentages to their respective classes in human milk compared to infant formula fed samples. In contrast, PUFAs contributed significantly higher percentages in brains of formula fed samples. Differences between human milk and formula lipids included minor fatty acids such as C8:0 and C12:0, which were higher in formula, and C16:1 and C18:1 n11, which were higher in human milk. Formula also contained higher levels of low- to medium-carbon triacylglycerols, whereas human milk had higher levels of high-carbon triacylglycerols. All phospholipid classes, and ceramides, were higher in formula. We show that brain lipid composition differs in weanling rats fed human milk or infant formula, but dietary lipid compositions do not necessarily manifest in the brain lipidome.
- ItemSecret of the Masters: Young Chess Players Show Advanced Visual Perspective Taking.(Frontiers Media S.A., 2019-10-24) Gao Q; Chen W; Wang Z; Lin D; Moeller KPlaying chess requires perspective taking in order to consistently infer the opponent's next moves. The present study examined whether long-term chess players are more advanced in visual perspective taking tasks than their counterparts without chess training during laboratory visual perspective taking tasks. Visual perspective taking performance was assessed among 11- to 12-year-old experienced chess players (n = 15) and their counterparts without chess training (n = 15) using a dot perspective task. Participants judged their own and the avatar's visual perspective that were either consistent with each other or not. The results indicated that the chess players out-performed the non-chess players (Experiment 1), yet this advantage disappeared when the task required less executive functioning (Experiment 2). Additionally, unlike the non-chess players whose performance improved in Experiment 2 when the executive function (EF) demand was reduced, the chess players did not show better perspective taking under such condition. These findings suggested that long-term chess experience might be associated with children's more efficient perspective taking of other people's viewpoints without exhausting their cognitive resources.