Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cooper, Haydn Mark"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Discrete groups and computational geometry : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University, Albany, New Zealand
    (Massey University, 2013) Cooper, Haydn Mark
    Let f and g be Möbius transformations with finite-orders p and q respectively. Further, let γ = tr[f; g] - 2, where tr[f; g] is the trace of the commutator of f and g in the standard SL(2;C) representation of Möbius transformations. The group G = hf; gi is then defined, up to conjugacy, by the parameter set (p; q; γ), whenever γ≠ 0. If the group G is discrete and non-elementary, then it is a Kleinian group. Kleinian groups are intimately related to hyperbolic 3-orbifolds. Here we develop a computer program that constructs a fundamental domain for such Kleinian groups. These constructions are undertaken directly from the parameters given above. We use this program to investigate, and add to, recent work on the classification of arithmetic Kleinian groups generated by two (finite-order) elliptic transformations.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify