Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cooper, Shaun"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Cubic elliptic functions
    (Massey University, 2003) Cooper, Shaun
  • Loading...
    Thumbnail Image
    Item
    The development of elliptic functions according to Ramanujan and Venkatachaliengar
    (Massey University, 2000) Cooper, Shaun
    These notes are based on the monograph Development of Elliptic Functions according to Ramanujan by K. Venkatachaliengar [2]. The goal of the notes is to show how some of the main properties of Jacobian and Weierstrass elliptic functions can be developed in an elementary way from the 1Ã1 function. All of the ideas presented in these notes can be found in Venkatachaliengar's book. The only thing I have done is to rearrange the order in which the material is presented. I am entirely responsible for any errors in these notes, and would be very grateful to be informed about them, whether they be large or small.
  • Loading...
    Thumbnail Image
    Item
    General relations between sums of squares and sums of triangular numbers
    (Massey University, 2004) Chandrashekar, Adiga; Cooper, Shaun; Han, Jung Hun
    Let = ( 1, · · · , m) be a partition of k. Let r (n) denote the number of solutions in integers of 1x21 + · · · + mx2 m = n, and let t (n) denote the number of solutions in non negative integers of 1x1(x1 +1)/2+· · ·+ mxm(xm +1)/2 = n. We prove that if 1 k 7, then there is a constant c , depending only on , such that r (8n + k) = c t (n), for all integers n.
  • Loading...
    Thumbnail Image
    Item
    On the number of representations of certain integers as sums of eleven or thirteen squares
    (Massey University, 2002) Cooper, Shaun
  • Loading...
    Thumbnail Image
    Item
    On the q-analogue of Kummer’s 24 solutions
    (Massey University, 2001) Cooper, Shaun
    The 3φ2 transformations are used to derive q-analogues ofthe relations amongst Kummer’s 24 solutions.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings