Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cushnahan T"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Hyperspectral Data Can Classify Plant Functional Groups Within New Zealand Hill Farm Pasture
    (MDPI AG, 2025-03-21) Cushnahan T; Grafton M; Pearson D; Ramilan T; Hasenauer H
    Reliable evidence of species composition or habitat distribution is essential to advance pasture management and decision making, including the definition of fertiliser rates for aerial top dressing. This is more difficult in a diverse environment such as New Zealand hill country farms. The simplification of the landscape character using plant functional types and species dominance has proven useful in ecological studies and in modelling grasslands. This study used hyperspectral imagery to map hill country pasture into plant functional groups (PFGs) as a proxy for pasture quality. We validated a farm scale map generated using support vector machines (SVMs), with ground reference data, to an overall accuracy of 88.75%. We discuss how that information can improve on-farm decision making and allow for better coordination with off-farm consultants. This form of farm-wide mapping is also critical for the successful application of variable-rate aerial topdressing technology as input for the allocation of fertiliser rates.
  • Loading...
    Thumbnail Image
    Item
    Hyperspectral Data Can Classify Plant Functional Groups Within New Zealand Hill Farm Pasture
    (MDPI AG, 2025-03-21) Cushnahan T; Grafton M; Pearson D; Ramilan T; Hasenauer H
  • Loading...
    Thumbnail Image
    Item
    Hyperspectral Data Can Differentiate Species and Cultivars of C3 and C4 Turf despite Measurable Diurnal Variation. Remote Sens. 2024, 16, 3142. https://doi.org/10.3390/rs16173142
    (MDPI AG, 2024-08-26) Cushnahan T; Grafton MCE; Pearson D; Ramilan T; Verreslt J
  • Loading...
    Thumbnail Image
    Item
    Identifying grass species using hyperspectral sensing
    (Fertilizer and Lime Research Centre, ) Cushnahan T; Yule IJ; Pullanagari RR; Grafton MCE; Currie, L; Singh, R

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings