Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "D'Orazio M"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Can active and passive wayfinding systems support fire evacuation in buildings? Insights from a virtual reality-based experiment
    (Elsevier B.V., 2023-05-24) Bernardini G; Lovreglio R; Quagliarini E; D'Orazio M
    Occupant safety in case of building fires depends on the selection of proper evacuation routes. Today, several passive and active Emergency Wayfinding Systems (EWSs) have been proposed to support occupant route choices. Nevertheless, their effectiveness should be accurately assessed before being manufactured and used. In this sense, Virtual Reality (VR) could support the design and preliminary evaluation phases, using the Theory of Affordances to quantitatively verify if the EWSs are correctly visible, understood, and able to support users in fulfilling the evacuation goal. This work hence aims at comparing the efficiency of different EWSs in terms of the Theory of Affordances through a VR experiment involving more than 70 volunteers of different ages. The experimental setup focuses on three types of EWSs (punctual and photoluminescent; passive, continuous and photoluminescent; continuous and active) and lights-on, lights-off and smoke conditions in an educational building. Results mainly indicate that the passive EWSs receive a higher rating while supporting the direction selection, while the active EWS is more effective along mono-directional paths. The work also confirms the capabilities of the proposed combined affordances-based and VR-based approach, boosting future works and suggesting additional comparisons between real-world and VR experiments on emergency wayfinding tasks and systems.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings