Browsing by Author "Dave LA"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemCorrection: Barnsley et al. Lifetime Climate Impacts of Diet Transitions: A Novel Climate Change Accounting Perspective. Sustainability 2021, 13, 5568(MDPI (Basel, Switzerland), 2022-07) Barnsley JE; Chandrakumar C; Gonzalez-Fischer C; Eme PE; Bourke BEP; Smith NW; Dave LA; McNabb WC; Clark H; Frame DJ; Lynch J; Roche JRThe authors would like to make the following corrections about the published paper The changes are as follows: (1) Replacing the Conflicts of Interest: Conflicts of Interest: The authors declare no conflict of interest. with Conflict of Interest: The Ministry for Primary Industries (MPI) is the regulator for New Zealand’s entire primary sector. As regulator, we are responsive to the needs of all food-producing industries and have a wide range of other responsibilities. In a practical sense, our role includes protecting New Zealand from biological risk, increasing food production, minimising environmental impacts, and ensuring the food we produce in New Zealand is safe for consumers. The primary sector is wide-ranging and includes our arable and horticulture industries, as well as our red meat, dairy, fisheries and aquaculture industries. The authors apologize for any inconvenience caused and state that the scientific conclusions are unaffected. The original publication has also been updated.
- ItemLifetime climate impacts of diet transitions: a novel climate change accounting perspective(MDPI (Basel, Switzerland), 2021-05-17) Barnsley JE; Chandrakumar C; Gonzalez-Fischer C; Eme PE; Bourke BEP; Smith NW; Dave LA; McNabb WC; Clark H; Frame DJ; Lynch J; Roche JR; Carolan MDietary transitions, such as eliminating meat consumption, have been proposed as one way to reduce the climate impact of the global and regional food systems. However, it should be ensured that replacement diets are indeed nutritious and that climate benefits are accurately accounted for. This study uses New Zealand food consumption as a case study for exploring the cumulative climate impact of adopting the national dietary guidelines and the substitution of meat from hypothetical diets. The new GWP* metric is used as it was designed to better reflect the climate impacts of the release of methane than the de facto standard 100-year Global Warming Potential metric (GWP100). A transition at age 25 to the hypothetical dietary guideline diet reduces cumulative warming associated with diet by 7 to 9% at the 100th year compared with consuming the average New Zealand diet. The reduction in diet-related cumulative warming from the transition to a hypothetical meat-substituted diet varied between 12 and 15%. This is equivalent to reducing an average individual's lifetime warming contribution by 2 to 4%. General improvements are achieved for nutrient intakes by adopting the dietary guidelines compared with the average New Zealand diet; however, the substitution of meat items results in characteristic nutrient differences, and these differences must be considered alongside changes in emission profiles.
- ItemThe role of holistic nutritional properties of diets in the assessment of food system and dietary sustainability(Taylor and Francis Group, 2023) Dave LA; Hodgkinson SM; Roy NC; Smith NW; McNabb WCAdvancing sustainable diets for nutrition security and sustainable development necessitates clear nutrition metrics for measuring nutritional quality of diets. Food composition, nutrient requirements, and dietary intake are among the most common nutrition metrics used in the current assessment of sustainable diets. Broadly, most studies in the area classify animal-source foods (ASF) as having a substantially higher environmental footprint in comparison to plant-source foods (PSF). As a result, much of the current dietary advice promulgates diets containing higher proportions of PSF. However, this generalization is misleading since most of these studies do not distinguish between the gross and bioavailable nutrient fractions in mixed human diets. The bioavailability of essential nutrients including β-carotene, vitamin B-12, iron, zinc, calcium, and indispensable amino acids varies greatly across different diets. The failure to consider bioavailability in sustainability measurements undermines the complementary role that ASF play in achieving nutrition security in vulnerable populations. This article critically reviews the scientific evidence on the holistic nutritional quality of diets and identifies methodological problems that exist in the way the nutritional quality of diets is measured. Finally, we discuss the importance of developing nutrient bioavailability as a requisite nutrition metric to contextualize the environmental impacts of different diets.
- ItemUse of the DELTA Model to Understand the Food System and Global Nutrition(Oxford University Press on behalf of the American Society for Nutrition, 2021-10) Smith NW; Fletcher AJ; Dave LA; Hill JP; McNabb WCBACKGROUND: Increasing attention is being directed at the environmental, social, and economic sustainability of the global food system. However, a key aspect of a sustainable food system should be its ability to deliver nutrition to the global population. Quantifying nutrient adequacy with current tools is challenging. OBJECTIVE: To produce a computational model illustrating the nutrient adequacy of current and proposed global food systems. METHODS: The DELTA Model was constructed using global food commodity balance sheet data, alongside demographic and nutrient requirement data from UN and European Food Safety Authority sources. It also includes nutrient bioavailability considerations for protein, the indispensable amino acids, iron, and zinc, sourced from scientific literature. RESULTS: The DELTA Model calculates global per capita nutrient availability under conditions of equal distribution and identifies areas of nutrient deficiency for various food system scenarios. Modeling the 2018 global food system showed that it supplied insufficient calcium (64% of demographically weighted target intake) and vitamin E (69%), despite supplying sufficient macronutrients. Several future scenarios were modeled, including variations in waste; scaling up current food production for the 2030 global population; plant-based food production systems; and removing sugar crops from the global food system. Each of these scenarios fell short of meeting requirements for multiple nutrients. These results emphasize the need for a balanced approach in the design of future food systems. CONCLUSIONS: Nutrient adequacy must be at the forefront of the sustainable food system debate. The DELTA Model was designed for both experts and nonexperts to inform this debate as to what may be possible, practical, and optimal for our food system. The model results strongly suggest that both plant and animal foods are necessary to achieve global nutrition. The model is freely available for public use so that anyone can explore current and simulated global food systems.