Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "De Silva K"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Effects of In-Process Temperatures and Blending Polymers on Acrylonitrile Butadiene Styrene Blends
    (MDPI (Basel, Switzerland), 2021-12-01) Harris M; Potgieter J; Mohsin H; De Silva K; Guen M-JL
    Acrylonitrile butadiene styrene (ABS) is a renowned commodity polymer for additive manufacturing, particularly fused deposition modelling (FDM). The recent large-scale applications of 3D-printed ABS require stable mechanical properties than ever needed. However, thermochemical scission of butadiene bonds is one of the contemporary challenges affecting the overall ABS stability. In this regard, literature reports melt-blending of ABS with different polymers with high thermal resistance. However, the comparison for the effects of different polymers on tensile strength of 3D-printed ABS blends was not yet reported. Furthermore, the cumulative studies comprising both blended polymers and in-process thermal variables for FDM were not yet presented as well. This research, for the first time, presents the statistical comparison of tensile properties for the added polymers and in-process thermal variables (printing temperature and build surface temperature). The research presents Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) to explain the thermochemical reasons behind achieved mechanical properties. Overall, ABS blend with PP shows high tensile strength (≈31 MPa) at different combinations of in-process parameters. Furthermore, some commonalities among both blends are noted, i.e., the tensile strength improves with increase of surface (bed) and printing temperature.

Copyright © Massey University  |  DSpace software copyright © 2002-2026 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify