Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Digby A"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Evidence for a Role of Extraintestinal Pathogenic Escherichia coli, Enterococcus faecalis and Streptococcus gallolyticus in the Aetiology of Exudative Cloacitis in the Critically Endangered Kākāpō (Strigops habroptilus)
    (John Wiley and Sons Ltd, 2025-04-19) French RK; Waller SJ; Wierenga JR; Grimwood RM; Hodgkinson-Bean J; Digby A; Uddstrom L; Eason D; Kākāpō Recovery Team; Argilla LS; Biggs PJ; Cookson A; French NP; Geoghegan JL
    The kākāpō is a critically endangered flightless parrot which suffers from exudative cloacitis, a debilitating disease resulting in inflammation of the vent margin or cloaca. Despite this disease emerging over 20 years ago, the cause of exudative cloacitis remains elusive. We used total RNA sequencing and metatranscriptomic analysis to characterise the infectome of lesions and cloacal swabs from nine kākāpō affected with exudative cloacitis, and compared this to cloacal swabs from 45 non-diseased kākāpō. We identified three bacterial species—Streptococcus gallolyticus, Enterococcus faecalis and Escherichia coli—as significantly more abundant in diseased kākāpō compared to healthy individuals. The genetic diversity observed in both S. gallolyticus and E. faecalis among diseased kākāpō suggests that these bacteria originate from exogenous sources rather than from kākāpō-to-kākāpō transmission. The presence of extraintestinal pathogenic E. coli (ExPEC)-associated virulence factors in the diseased kākāpō population suggests that E. coli may play a critical role in disease progression by facilitating iron acquisition and causing DNA damage in host cells, possibly in association with E. faecalis. No avian viral, fungal nor other parasitic species were identified. These results, combined with the consistent presence of one E. coli gnd sequence type across multiple diseased birds, suggest that this species may be the primary cause of exudative cloacitis. These findings shed light on possible causative agents of exudative cloacitis, and offer insights into the interplay of microbial factors influencing the disease.
  • Loading...
    Thumbnail Image
    Item
    Gut microbiota of the threatened takahē: biogeographic patterns and conservation implications
    (BioMed Central Ltd, 2022-12) West AG; DeLaunay A; Marsh P; Perry EK; Jolly M; Gartrell BD; Pas A; Digby A; Taylor MW
    BACKGROUND: The Aotearoa New Zealand takahē (Porphyrio hochstetteri), once thought to be extinct, is a nationally threatened flightless rail under intensive conservation management. While there has been previous research into disease-related microbes in takahē, little is known about the microbes present in the gastrointestinal tract. Given the importance of gut-associated microbes to herbivore nutrition and immunity, knowledge of these communities is likely to be of considerable conservation value. Here we examined the gut microbiotas of 57 takahē at eight separate locations across Aotearoa New Zealand. RESULTS: Faecal samples, taken as a proxy for the hindgut bacterial community, were subjected to 16S rRNA gene amplicon sequencing using Illumina MiSeq. Phylogenetic analysis of > 2200 amplicon sequence variants (ASVs) revealed nine main bacterial phyla (Acidobacteriota, Actinobacteriota, Bacteroidota, Campilobacterota, Firmicutes, Fusobacteriota, Planctomycetota, Proteobacteria, and Verrucomicrobiota) that accounted for the majority of sequence reads. Location was a significant effect (p value < 0.001, 9999 permutations) that accounted for 32% of the observed microbiota variation. One ASV, classified as Lactobacillus aviarius, was present in all samples at an average relative abundance of 17% (SD = 23.20). There was strong evidence (p = 0.002) for a difference in the abundance of the genus Lactobacillus between locations. A common commensal bacterium previously described in takahē, Campylobacter spp., was also detected in most faecal samples. CONCLUSIONS: Location plays a pivotal role in the observed variation among takahē gut bacterial communities and is potentially due to factors such as supplemental feeding and medical treatment experienced by birds housed in captivity at one of the eight sampled sites. These data present a first glimpse of the previously unexplored takahē gut microbiota and provide a baseline for future microbiological studies and conservation efforts.
  • Loading...
    Thumbnail Image
    Item
    Host phylogeny shapes viral transmission networks in an island ecosystem
    (Springer Nature Limited, 2023-11) French RK; Anderson SH; Cain KE; Greene TC; Minor M; Miskelly CM; Montoya JM; Wille M; Muller CG; Taylor MW; Digby A; Kākāpō Recovery Team; Holmes EC
    Virus transmission between host species underpins disease emergence. Both host phylogenetic relatedness and aspects of their ecology, such as species interactions and predator-prey relationships, may govern rates and patterns of cross-species virus transmission and hence zoonotic risk. To address the impact of host phylogeny and ecology on virus diversity and evolution, we characterized the virome structure of a relatively isolated island ecological community in Fiordland, New Zealand, that are linked through a food web. We show that phylogenetic barriers that inhibited cross-species virus transmission occurred at the level of host phyla (between the Chordata, Arthropoda and Streptophyta) as well as at lower taxonomic levels. By contrast, host ecology, manifest as predator-prey interactions and diet, had a smaller influence on virome composition, especially at higher taxonomic levels. The virus-host community comprised a 'small world' network, in which hosts with a high diversity of viruses were more likely to acquire new viruses, and generalist viruses that infect multiple hosts were more likely to infect additional species compared to host specialist viruses. Such a highly connected ecological community increases the likelihood of cross-species virus transmission, particularly among closely related species, and suggests that host generalist viruses present the greatest risk of disease emergence.
  • Loading...
    Thumbnail Image
    Item
    Influence of management practice on the microbiota of a critically endangered species: a longitudinal study of kākāpō chick faeces and associated nest litter
    (BioMed Central, Ltd., 2022-09-30) West AG; Digby A; Lear G; Armstrong D; Armstrong-James D; Bromley M; Buckley E; Chatterton J; Cox MP; Cramer RA; Crane J; Dearden PK; Eason D; Fisher MC; Gago S; Gartrell B; Gemmell NJ; Glare TR; Guhlin J; Howard J; Lacap-Bugler D; Le Lec M; Lin XX; Lofgren L; Mackay J; Meis J; Morelli KA; Perrott J; Petterson M; Quinones-Mateu M; Rhodes J; Roberts J; Stajich J; Taylor MW; Tebbutt SJ; Truter-Meyer A; Uddstrom L; Urban L; van Rhijn N; Vercoe D; Vesely E; Weir BS; Winter DJ; Yeung J
    Background: The critically endangered kākāpō is a flightless, nocturnal parrot endemic to Aotearoa New Zealand. Recent efforts to describe the gastrointestinal microbial community of this threatened herbivore revealed a low-diversity microbiota that is often dominated by Escherichia-Shigella bacteria. Given the importance of associated microbial communities to animal health, and increasing appreciation of their potential relevance to threatened species conservation, we sought to better understand the development of this unusual gut microbiota profile. To this end, we conducted a longitudinal analysis of faecal material collected from kākāpō chicks during the 2019 breeding season, in addition to associated nest litter material. Results: Using an experimental approach rarely seen in studies of threatened species microbiota, we evaluated the impact of a regular conservation practice on the developing kākāpō microbiota, namely the removal of faecal material from nests. Artificially removing chick faeces from nests had negligible impact on bacterial community diversity for either chicks or nests (p > 0.05). However, the gut microbiota did change significantly over time as chick age increased (p < 0.01), with an increasing relative abundance of Escherichia-Shigella coli over the study period and similar observations for the associated nest litter microbiota (p < 0.01). Supplementary feeding substantially altered gut bacterial diversity of kākāpō chicks (p < 0.01), characterised by a significant increase in Lactobacillus bacteria. Conclusions: Overall, chick age and hand rearing conditions had the most marked impact on faecal bacterial communities. Similarly, the surrounding nest litter microbiota changed significantly over time since a kākāpō chick was first placed in the nest, though we found no evidence that removal of faecal material influenced the bacterial communities of either litter or faecal samples. Taken together, these observations will inform ongoing conservation and management of this most enigmatic of bird species.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings