Browsing by Author "Dobson J"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDevelopment of a Nomogram to Predict the Outcome for Patients with Soft Tissue Sarcoma.(MDPI (Basel, Switzerland), 2023-03-29) Bray JP; Munday JS; Dobson J; Hayes A; Hughes KSoft tissue sarcomas (STSs) are common cutaneous or subcutaneous neoplasms in dogs. Most STSs are initially treated by surgical excision, and local recurrence may develop in almost 20% of patients. Currently, it is difficult to predict which STS will recur after excision, but this ability would greatly assist patient management. In recent years, the nomogram has emerged as a tool to allow oncologists to predict an outcome from a combination of risk factors. The aim of this study was to develop a nomogram for canine STSs and determine if the nomogram could predict patient outcomes better than individual tumour characteristics. The current study provides the first evidence in veterinary oncology to support a role for the nomogram to assist with predicting the outcome for patients after surgery for STSs. The nomogram developed in this study accurately predicted tumour-free survival in 25 patients but failed to predict recurrence in 1 patient. Overall, the sensitivity, specificity, positive predictive, and negative predictive values for the nomogram were 96%, 45%, 45%, and 96%, respectively (area under the curve: AUC = 0.84). This study suggests a nomogram could play an important role in helping to identify patients who could benefit from revision surgery or adjuvant therapy for an STS.
- ItemTsunami or storm deposit? A late Holocene sedimentary record from Swamp Bay, Rangitoto ki te Tonga/D’Urville Island, Aotearoa–New Zealand(Taylor and Francis Group, 2023) King DN; Clark K; Chagué C; Li X; Lane E; McFadgen BG; Hippolite J; Meihana P; Wilson B; Dobson J; Geiger P; Robb H; Hikuroa D; Williams S; Morgenstern R; Scheele FInformed by Māori oral histories that refer to past catastrophic marine inundations, multi-proxy analysis of stratigraphic records from Swamp Bay, Rangitoto ki te Tonga (D’Urville Island) shows evidence of an anomalous deposit extending some 160 m inland. The deposit includes two distinct lithofacies. The lower sand unit is inferred to have been transported from the marine environment, with corresponding increases in the percentages of benthic marine and brackish–marine diatoms, and geochemical properties indicative of sudden changes in environmental conditions. Radiocarbon dating indicates the deposit formation is less than 402 yrs BP, and pollen indicates it is unlikely to be younger than 1870 CE. Core stratigraphy age models and co-seismic chronologies point to the marine unit most likely being emplaced by tsunami transport associated with rupture of the Wairarapa Fault in 1855 CE. The overlying unit of gravel and silt is inferred to be fluvial deposit and slope-wash from the surrounding hills, loosened by ground-shaking following the earthquake. These findings indicate the 1855 CE earthquake may have been more complex than previously thought and, or, available tsunami modelling does not fully capture the local complexities in bathymetry and topography that can cause hazardous and localized tsunami amplification in embayments like Swamp Bay.