Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Dowrick JM"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Integrated multi-omic and symptom clustering reveals lower-gastrointestinal disorders of gut-brain interaction heterogeneity
    (Taylor and Francis Group, 2026-12-31) Dowrick JM; Roy NC; Carco C; James SC; Heenan PE; Frampton CMA; Fraser K; Young W; Cooney J; Trower T; Keenan JI; McNabb WC; Mullaney JA; Bayer SB; Talley NJ; Gearry RB; Angeli-Gordon TR
    Rome IV disorders of gut-brain interaction (DGBI) subtypes are known to be unstable and demonstrate high rates of non-treatment response, likely indicating patient heterogeneity. Cluster analysis, a type of unsupervised machine learning, can identify homogeneous sub-populations. Independent cluster analyses of symptom and biological data have highlighted its value in predicting patient outcomes. Integrated clustering of symptom and biological data may provide a unique multimodal perspective that better captures the complexity of DGBI. Here, integrated symptom and multi-omic cluster analysis was performed on a cohort of healthy controls and patients with lower-gastrointestinal tract DGBI. Cluster stability was assessed by considering how frequently pairs of participants appeared in the same cluster between different bootstrapped datasets. Functional enrichment analysis was performed on the biological signatures of stable DGBI-predominant clusters, implicating disrupted ammonia handling and metabolism as possible pathophysiologies present in a subset of patients with DGBI. Integrated clustering revealed subtypes that were not apparent using a singular modality, suggesting a symptom-only classification is prone to capturing heterogeneous sub-populations.

Copyright © Massey University  |  DSpace software copyright © 2002-2026 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify