Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Esnaashari, Shadi"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Using students' participation data to understand their impact on students' course outcomes : a thesis presented in partial fulfilment of the requirements for the MPhil degree at Massey University, Albany, New Zealand, Master of Philosophy degree in Information Technology
    (Massey University, 2016) Esnaashari, Shadi
    Many students with diverse needs are enrolled in university courses. Not all these students are able to be successful in completing their courses. Faculty members are keen to identify these students who have the risk of failing their courses early enough to help them by providing timely feedback so that students can meet the requirements of their courses. There are many studies using educational data mining algorithms which aim to identify at risk students by predicting students’ course outcomes, for example, from their forum activities, content requests, and time spent online. This study addresses this issue by clustering the students’ course outcomes using students’ class participation data which can be obtained from various online education technological solutions. Using data mining in educational systems as an analytical tool offers researchers new opportunities to trace students’ digital footprints in various course related activities and analyse students’ traced data to help the students in their learning processes and teachers in their educational practices. In this study the focus is not only on finding at risk students but also in using data for improving learning process and supporting personalized learning. In‐class participation data was collected through audience participation tools, the out‐of‐class participation data was collected from Stream and combined with the qualitative and quantitative data from questionnaires. The participation data were collected from 5 different courses in the mainstream university programs. Our first aim was to understand the perception of students regarding the effect of participation and using the audience participation tools in class and their effects on students’ learning processes. Moreover, we would like to identify to what extents their perceptions match with their final course outcomes. Therefore, the tool has been used in different mainstream courses from different departments. The results of our study show that students who participated more and thought that the tool helped them to learn, engaged and increased their interest in the course more, and eventually achieved highest scores. This finding supports the view that inclass participation is critical to learning and academic success.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify