Browsing by Author "Farhan M"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemBatchHL+: batch dynamic labelling for distance queries on large-scale networks(Springer-Verlag GmbH Germany, part of Springer Nature, 2024-01) Farhan M; Koehler H; Wang QMany real-world applications operate on dynamic graphs to perform important tasks. In this article, we study batch-dynamic algorithms that are capable of updating distance labelling efficiently in order to reflect the effects of rapid changes on such graphs. To explore the full pruning potentials, we first characterize the minimal set of vertices being affected by batch updates. Then, we reveal patterns of interactions among different updates (edge insertions and edge deletions) and leverage them to design pruning rules for reducing update search space. These interesting findings lead us to developing a new batch-dynamic method, called BatchHL+ , which can dynamize labelling for distance queries much more efficiently than existing work. We provide formal proofs for the correctness and minimality of BatchHL+ which are non-trivial and require a delicate analysis of patterns of interactions. Empirically, we have evaluated the performance of BatchHL+ on 15 real-world networks. The results show that BatchHL+ significantly outperforms the state-of-the-art methods with up to 3 orders of magnitude faster in reflecting updates of rapidly changing graphs for distance queries.
- ItemBio-Inspired Energy-Efficient Cluster-Based Routing Protocol for the IoT in Disaster Scenarios.(MDPI (Basel, Switzerland), 2024-08-19) Ahmed S; Hossain MA; Chong PHJ; Ray SK; Farhan M; Mahmood K; Jabbar SThe Internet of Things (IoT) is a promising technology for sensing and monitoring the environment to reduce disaster impact. Energy is one of the major concerns for IoT devices, as sensors used in IoT devices are battery-operated. Thus, it is important to reduce energy consumption, especially during data transmission in disaster-prone situations. Clustering-based communication helps reduce a node's energy decay during data transmission and enhances network lifetime. Many hybrid combination algorithms have been proposed for clustering and routing protocols to improve network lifetime in disaster scenarios. However, the performance of these protocols varies widely based on the underlying network configuration and the optimisation parameters considered. In this research, we used the clustering parameters most relevant to disaster scenarios, such as the node's residual energy, distance to sink, and network coverage. We then proposed the bio-inspired hybrid BOA-PSO algorithm, where the Butterfly Optimisation Algorithm (BOA) is used for clustering and Particle Swarm Optimisation (PSO) is used for the routing protocol. The performance of the proposed algorithm was compared with that of various benchmark protocols: LEACH, DEEC, PSO, PSO-GA, and PSO-HAS. Residual energy, network throughput, and network lifetime were considered performance metrics. The simulation results demonstrate that the proposed algorithm effectively conserves residual energy, achieving more than a 17% improvement for short-range scenarios and a 10% improvement for long-range scenarios. In terms of throughput, the proposed method delivers a 60% performance enhancement compared to LEACH, a 53% enhancement compared to DEEC, and a 37% enhancement compared to PSO. Additionally, the proposed method results in a 60% reduction in packet drops compared to LEACH and DEEC, and a 30% reduction compared to PSO. It increases network lifetime by 10-20% compared to the benchmark algorithms.