Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ferrando AA"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Consideration of the role of protein quality in determining dietary protein recommendations
    (Frontiers Media S.A., 2024-11-13) Wolfe RR; Church DD; Ferrando AA; Moughan PJ; Grootswagers P
    The quality of a dietary protein refers to its ability to provide the EAAs necessary to meet dietary requirements. There are 9 dietary amino acids that cannot be metabolically produced in the body and therefore must be consumed as part of the diet to avoid adverse metabolic consequences. These essential amino acids (EAAs) serve a variety of roles in the body. The amount and profile of the dietary EAAs relative to the individual EAA requirements and the digestibility of the dietary protein are the key factors that determine its quality. Currently the Digestible Indispensable Amino Acid Score (DIAAS) is the best available approach to quantifying protein quality. The most prominent metabolic role of dietary EAAs is to stimulate protein synthesis by serving as signals to activate molecular mechanisms responsible for the initiation of protein synthesis and, most importantly, to provide the necessary precursors for the synthesis of complete proteins. Current dietary recommendations generally do not consider protein quality. Accounting for protein quality in dietary patterns can be accomplished while staying within established ranges for dietary protein consumption. Poor protein quality can be compensated for to some extent by eating more low-quality protein, but to be effective (“complementary”) the limiting EAA must differ between the low-quality protein and the base diet to which it is being supplemented. Adding a high-quality protein to a dietary pattern based on low-quality protein is more effective in meeting EAA goals than increasing the amount of low-quality protein, even if the low-quality proteins are complementary. Further, reliance entirely on low-quality protein food sources, particularly in circumstances that may benefit from a level of dietary EAAs greater than minimal requirements, is likely to include excessive caloric consumption. While protein consumption in high-income nations is generally perceived to be adequate or even excessive, assessment of dietary patterns indicates that a significant percentage of individuals may fall short of meeting optimal levels of EAA consumption, especially in circumstances such as aging in which the optimal EAA consumption is greater than basal values for healthy young individuals. The case is made that protein quality is an important consideration in meeting EAA requirements.
  • Loading...
    Thumbnail Image
    Item
    Whole-body protein kinetic models to quantify the anabolic response to dietary protein consumption
    (Elsevier Ltd d on behalf of European Society for Clinical Nutrition and Metabolism, 2021-04) Wolfe RR; Kim I-Y; Church DD; Moughan PJ; Park S; Ferrando AA
    Determination of whole body rates of protein synthesis, breakdown and net balance in human subjects still has an important role in nutrition research. Quantifying the anabolic response to dietary protein intake is a particularly important application. There are different models with which to accomplish this goal, each with advantages and limitations. The nitrogen (N)-flux method in which tracer is given orally has distinct advantages in terms of lack of invasiveness. In addition, the calculated results include all aspects of whole-body protein synthesis and breakdown. However, the prolonged timeframe of the method eliminates the possibility of the “pre-post” experimental design whereby each subject serves as their own control in the evaluation of the response to a meal. Models based on the primed-constant infusion of an essential amino acid (EAA) tracer enable the determination of baseline whole-body protein kinetics within 2 h, and can quantify a dynamic change from the basal state. The greatest challenge when using an EAA model is distinguishing exogenous and endogenous sources of the tracee in the blood. One approach is to use an intrinsically-labeled protein. This method has the advantage that the exogenous tracee is clearly distinguished from endogenous tracee. On the other hand, the intrinsically-labeled protein method suffers from unmeasured dilution that is likely to cause the systematic underestimation of the rate of appearance of exogenous tracee and thus overestimate the rate of whole-body protein breakdown. Alternatively, the “bioavailability” approach estimates the contribution of exogenous tracee to the peripheral circulation from the amount of tracee ingested, the true ileal digestibility of the tracee, and the irreversible loss of tracee prior to entry into the peripheral circulation. Errors in assumed values with the bioavailability method can potentially be significant, but are not likely to result in the systematic over- or under-estimations of rates of whole-body protein synthesis and breakdown. The optimal method depends on the degree of uncertainty regarding required assumptions in a particular circumstance. With all methods, it is advisable to calculate upper and lower bounds of whole body protein kinetics, in accord with reasonable maximal and minimal assumed values. Simultaneous use of two methods requiring different assumptions can also serve to confirm the validity of single approach.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings