Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Geoghegan JL"

Now showing 1 - 11 of 11
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A novel gyrovirus is abundant in yellow-eyed penguin (Megadyptes antipodes) chicks with a fatal respiratory disease.
    (2023-02) Wierenga JR; Morgan KJ; Hunter S; Taylor HS; Argilla LS; Webster T; Dubrulle J; Jorge F; Bostina M; Burga L; Holmes EC; McInnes K; Geoghegan JL
    Yellow-eyed penguins (Megadyptes antipodes), or hoiho in te reo Māori, are predicted to become extinct on mainland Aotearoa New Zealand in the next few decades, with infectious disease a significant contributor to their decline. A recent disease phenomenon termed respiratory distress syndrome (RDS) causing lung pathology has been identified in very young chicks. To date, no causative pathogens for RDS have been identified. In 2020 and 2021, the number of chick deaths from suspected RDS increased four- and five-fold, respectively, causing mass mortality with an estimated mortality rate of >90%. We aimed to identify possible pathogens responsible for RDS disease impacting these critically endangered yellow-eyed penguins. Total RNA was extracted from tissue samples collected during post-mortem of 43 dead chicks and subject to metatranscriptomic sequencing and histological examination. From these data we identified a novel and highly abundant gyrovirus (Anelloviridae) in 80% of tissue samples. This virus was most closely related to Gyrovirus 8 discovered in a diseased seabird, while other members of the genus Gyrovirus include Chicken anaemia virus, which causes severe disease in juvenile chickens. No other exogenous viral transcripts were identified in these tissues. Due to the high relative abundance of viral reads and its high prevalence in diseased animals, it is likely that this novel gyrovirus is associated with RDS in yellow-eyed penguin chicks.
  • Loading...
    Thumbnail Image
    Item
    Avian Influenza Virus Surveillance Across New Zealand and Its Subantarctic Islands Detects H1N9 in Migratory Shorebirds, but Not 2.3.4.4b HPAI H5N1
    (John Wiley and Sons Ltd, 2025-04) Waller SJ; Wierenga JR; Heremia L; Darnley JA; de Vries I; Dubrulle J; Robinson Z; Miller AK; Niebuhr CN; Melville DS; Schuckard R; Battley PF; Wille M; Alai B; Cole R; Cooper J; Ellenberg U; Elliott G; Faulkner J; Fischer JH; Fyfe J; Hay L; Houston D; Keys BC; Long J; Long R; Mattern T; McGovern H; McNutt L; Moore P; Neil O; Osborne J; Pagé A-S; Parker KA; Perry M; Philp B; Reid J; Rexer-Huber K; Russell JC; Sagar R; Ruru TT; Thompson T; Thomson L; Tinnemans J; Uddstrom L; Waipoua TA; Walker K; Whitehead E; Wickes C; Young MJ; McInnes K; Winter D; Geoghegan JL
    Highly pathogenic avian influenza (HPAI) virus subtype H5N1 has never been detected in New Zealand. The potential impact of this virus on New Zealand's wild birds would be catastrophic. To expand our knowledge of avian influenza viruses across New Zealand, we sampled wild aquatic birds from New Zealand, its outer islands and its subantarctic territories. Metatranscriptomic analysis of 700 individuals spanning 33 species revealed no detection of H5N1 during the annual 2023–2024 migration. A single detection of H1N9 in red knots (Calidris canutus) was noted. This study provides a baseline for expanding avian influenza virus monitoring in New Zealand.
  • Loading...
    Thumbnail Image
    Item
    COVID-19 vaccine strategies for Aotearoa New Zealand: a mathematical modelling study
    (Elsevier Ltd, 2021-10) Nguyen T; Adnan M; Nguyen BP; de Ligt J; Geoghegan JL; Dean R; Jefferies S; Baker MG; Seah WKG; Sporle AA; French NP; Murdoch DR; Welch D; Simpson CR
    Background: COVID-19 elimination measures, including border closures have been applied in New Zealand. We have modelled the potential effect of vaccination programmes for opening borders. Methods: We used a deterministic age-stratified Susceptible, Exposed, Infectious, Recovered (SEIR) model. We minimised spread by varying the age-stratified vaccine allocation to find the minimum herd immunity requirements (the effective reproduction number Reff<1 with closed borders) under various vaccine effectiveness (VE) scenarios and R0 values. We ran two-year open-border simulations for two vaccine strategies: minimising Reff and targeting high-risk groups. Findings: Targeting of high-risk groups will result in lower hospitalisations and deaths in most scenarios. Reaching the herd immunity threshold (HIT) with a vaccine of 90% VE against disease and 80% VE against infection requires at least 86•5% total population uptake for R0=4•5 (with high vaccination coverage for 30-49-year-olds) and 98•1% uptake for R0=6. In a two-year open-border scenario with 10 overseas cases daily and 90% total population vaccine uptake (including 0-15 year olds) with the same vaccine, the strategy of targeting high-risk groups is close to achieving HIT, with an estimated 11,400 total hospitalisations (peak 324 active and 36 new daily cases in hospitals), and 1,030 total deaths. Interpretation: Targeting high-risk groups for vaccination will result in fewer hospitalisations and deaths with open borders compared to targeting reduced transmission. With a highly effective vaccine and a high total uptake, opening borders will result in increasing cases, hospitalisations, and deaths. Other public health and social measures will still be required as part of an effective pandemic response. Funding: This project was funded by the Health Research Council [20/1018]. Research in context.
  • Loading...
    Thumbnail Image
    Item
    Evidence for a Role of Extraintestinal Pathogenic Escherichia coli, Enterococcus faecalis and Streptococcus gallolyticus in the Aetiology of Exudative Cloacitis in the Critically Endangered Kākāpō (Strigops habroptilus)
    (John Wiley and Sons Ltd, 2025-04-19) French RK; Waller SJ; Wierenga JR; Grimwood RM; Hodgkinson-Bean J; Digby A; Uddstrom L; Eason D; Kākāpō Recovery Team; Argilla LS; Biggs PJ; Cookson A; French NP; Geoghegan JL
    The kākāpō is a critically endangered flightless parrot which suffers from exudative cloacitis, a debilitating disease resulting in inflammation of the vent margin or cloaca. Despite this disease emerging over 20 years ago, the cause of exudative cloacitis remains elusive. We used total RNA sequencing and metatranscriptomic analysis to characterise the infectome of lesions and cloacal swabs from nine kākāpō affected with exudative cloacitis, and compared this to cloacal swabs from 45 non-diseased kākāpō. We identified three bacterial species—Streptococcus gallolyticus, Enterococcus faecalis and Escherichia coli—as significantly more abundant in diseased kākāpō compared to healthy individuals. The genetic diversity observed in both S. gallolyticus and E. faecalis among diseased kākāpō suggests that these bacteria originate from exogenous sources rather than from kākāpō-to-kākāpō transmission. The presence of extraintestinal pathogenic E. coli (ExPEC)-associated virulence factors in the diseased kākāpō population suggests that E. coli may play a critical role in disease progression by facilitating iron acquisition and causing DNA damage in host cells, possibly in association with E. faecalis. No avian viral, fungal nor other parasitic species were identified. These results, combined with the consistent presence of one E. coli gnd sequence type across multiple diseased birds, suggest that this species may be the primary cause of exudative cloacitis. These findings shed light on possible causative agents of exudative cloacitis, and offer insights into the interplay of microbial factors influencing the disease.
  • Loading...
    Thumbnail Image
    Item
    Genomic epidemiology of Delta SARS-CoV-2 during transition from elimination to suppression in Aotearoa New Zealand
    (Springer Nature Limited, 2022-07-12) Jelley L; Douglas J; Ren X; Winter D; McNeill A; Huang S; French N; Welch D; Hadfield J; de Ligt J; Geoghegan JL
    New Zealand's COVID-19 elimination strategy heavily relied on the use of genomics to inform contact tracing, linking cases to the border and to clusters during community outbreaks. In August 2021, New Zealand entered its second nationwide lockdown after the detection of a single community case with no immediately apparent epidemiological link to the border. This incursion resulted in the largest outbreak seen in New Zealand caused by the Delta Variant of Concern. Here we generated 3806 high quality SARS-CoV-2 genomes from cases reported in New Zealand between 17 August and 1 December 2021, representing 43% of reported cases. We detected wide geographical spread coupled with undetected community transmission, characterised by the apparent extinction and reappearance of genomically linked clusters. We also identified the emergence, and near replacement, of genomes possessing a 10-nucleotide frameshift deletion that caused the likely truncation of accessory protein ORF7a. By early October, New Zealand moved from an elimination strategy to a suppression strategy and the role of genomics changed markedly from being used to track and trace, towards population-level surveillance.
  • Loading...
    Thumbnail Image
    Item
    Oral and Faecal Viromes of New Zealand Calves on Pasture With an Idiopathic Ill-Thrift Syndrome
    (John Wiley and Sons Ltd, 2025-07-28) Grimwood RM; Darnley JA; O’Connell JP; Hunt H; Taylor HS; Lawrence KE; Abbott MBW; Jauregui R; Geoghegan JL; Zhai S-L
    Since 2015, an idiopathic ill-thrift syndrome featuring diarrhoea and, in some cases, gastrointestinal ulceration has been reported in weaned New Zealand dairy calves. Similar syndromes have been described in the British Isles and Australia, but investigations in New Zealand have yet to identify a specific cause. Notably, the viromes of affected calves remain understudied. We conducted metatranscriptomic analyses of oral and faecal viromes in 11 calves from a dairy farm in Taranaki, New Zealand, experiencing an outbreak of this syndrome. This included nine calves showing clinical signs. Our analysis identified 18 bovine-associated viruses across two DNA and three RNA viral families, including six novel species. Oral viromes were dominated by Pseudocowpox virus, which was detected in all calves with oral lesions. Faecal viromes were more diverse, featuring adenoviruses, caliciviruses, astroviruses and picornaviruses. Bovine bopivirus, from the Picornaviridae family and previously unreported in New Zealand, was significantly associated with calves showing oral lesions and diarrhoea, indicating a possible link to disease, though its role remains unclear. The diverse viral communities of the calves complicate the identification of a single causative agent. Importantly, no novel viruses were significantly associated with the syndrome, and the viromes closely resembled those found in cattle globally. These findings suggest the syndrome likely has a multifactorial origin involving nutritional, management and environmental factors rather than being driven primarily by known or novel viruses. Further, research across regions and seasons is recommended to clarify the role of viruses in idiopathic ill-thrift among New Zealand calves.
  • Loading...
    Thumbnail Image
    Item
    Preparing for the next pandemic: insights from Aotearoa New Zealand's Covid-19 response
    (Elsevier Ltd, 2025-03-18) French NP; Maxwell H; Baker MG; Callaghan F; Dyet K; Geoghegan JL; Hayman DTS; Huang QS; Kvalsvig A; Russell E; Scott P; Thompson TP; Plank MJ
    In 2020 Aotearoa New Zealand, like many other countries, faced the coronavirus pandemic armed with an influenza-based pandemic plan. The country adapted rapidly to mount a highly strategic and effective elimination response to the SARS-CoV-2 pandemic. However, implementation was hampered by gaps in pandemic preparedness. These gaps undermined effectiveness of the response and exacerbated inequitable impacts of both Covid-19 disease and control measures. Our review examines the Covid-19 response, reflecting on strengths, limitations and implications for pandemic planning. We identify three key areas for improvement: 1) development of a systematised procedure for risk assessment of a new pandemic pathogen; 2) investment in essential capabilities during inter-pandemic periods; and 3) building equity into all stages of the response. We present a typology of potential pathogens and scenarios and describe the evidence assessment process and core capabilities required for countries to respond fluidly, equitably, and effectively to a rapidly emerging pandemic threat.
  • Loading...
    Thumbnail Image
    Item
    Spatial and temporal transmission dynamics of respiratory syncytial virus in New Zealand before and after the COVID-19 pandemic.
    (Cold Spring Harbor Laboratory, 2024-07-17) Jelley L; Douglas J; O'Neill M; Berquist K; Claasen A; Wang J; Utekar S; Johnston H; Bocacao J; Allais M; de Ligt J; Ee Tan C; Seeds R; Wood T; Aminisani N; Jennings T; Welch D; Turner N; McIntyre P; Dowell T; Trenholme A; Byrnes C; SHIVERS investigation team; Webby R; French N; Winter D; Huang QS; Geoghegan JL
    Human respiratory syncytial virus (RSV) is a major cause of acute respiratory infection. In 2020, RSV was effectively eliminated from the community in New Zealand due to non-pharmaceutical interventions (NPI) used to control the spread of COVID-19. However, in April 2021, following a brief quarantine-free travel agreement with Australia, there was a large-scale nationwide outbreak of RSV that led to reported cases more than five times higher, and hospitalisations more than three times higher, than the typical seasonal pattern. In this study, we generated 1,471 viral genomes of both RSV-A and RSV-B sampled between 2015 and 2022 from across New Zealand. Using a phylodynamics approach, we used these data to better understand RSV transmission patterns in New Zealand prior to 2020, and how RSV became re-established in the community following the relaxation of COVID-19 restrictions. We found that in 2021, there was a large epidemic of RSV in New Zealand that affected a broader age group range compared to the usual pattern of RSV infections. This epidemic was due to an increase in RSV importations, leading to several large genomic clusters of both RSV-A ON1 and RSV-B BA9 genotypes in New Zealand. However, while a number of importations were detected, there was also a major reduction in RSV genetic diversity compared to pre-pandemic seasonal outbreaks. These genomic clusters were temporally associated with the increase of migration in 2021 due to quarantine-free travel from Australia at the time. The closest genetic relatives to the New Zealand RSV genomes, when sampled, were viral genomes sampled in Australia during a large, off-season summer outbreak several months prior, rather than cryptic lineages that were sustained but not detected in New Zealand. These data reveal the impact of NPI used during the COVID-19 pandemic on other respiratory infections and highlight the important insights that can be gained from viral genomes.
  • Loading...
    Thumbnail Image
    Item
    Total infectome investigation of diphtheritic stomatitis in yellow-eyed penguins (Megadyptes antipodes) reveals a novel and abundant megrivirus.
    (Elsevier B.V., 2023-11-01) Wierenga JR; Grimwood RM; Taylor HS; Hunter S; Argilla LS; Webster T; Lim L; French R; Schultz H; Jorge F; Bostina M; Burga L; Swindells-Wallace P; Holmes EC; McInnes K; Morgan KJ; Geoghegan JL
    First identified in 2002, diphtheritic stomatitis (DS) is a devastating disease affecting yellow-eyed penguins (Megadyptes antipodes, or hoiho in te reo Māori). The disease is associated with oral lesions in chicks and has caused significant morbidity and mortality. DS is widespread among yellow-eyed penguin chicks on mainland New Zealand yet appears to be absent from the subantarctic population. Corynebacterium spp. have previously been suspected as causative agents yet, due to inconsistent cultures and inconclusive pathogenicity, their role in DS is unclear. Herein, we used a metatranscriptomic approach to identify potential causative agents of DS by revealing the presence and abundance of all viruses, bacteria, fungi and protozoa - together, the infectome. Oral and cloacal swab samples were collected from presymptomatic, symptomatic and recovered chicks along with a control group of healthy adults. Two novel viruses from the Picornaviridae were identified, one of which - yellow-eyed penguin megrivirus - was highly abundant in chicks irrespective of health status but not detected in healthy adults. Tissue from biopsied oral lesions also tested positive for the novel megrivirus upon PCR. We found no overall clustering among bacteria, protozoa and fungi communities at the genus level across samples, although Paraclostridium bifermentans was significantly more abundant in oral microbiota of symptomatic chicks compared to other groups. The detection of a novel and highly abundant megrivirus has sparked a new line of inquiry to investigate its potential association with DS.
  • Loading...
    Thumbnail Image
    Item
    Tracing the international arrivals of SARS-CoV-2 Omicron variants after Aotearoa New Zealand reopened its border
    (Springer Nature Limited, 2022-10-29) Douglas J; Winter D; McNeill A; Carr S; Bunce M; French N; Hadfield J; de Ligt J; Welch D; Geoghegan JL
    In the second quarter of 2022, there was a global surge of emergent SARS-CoV-2 lineages that had a distinct growth advantage over then-dominant Omicron BA.1 and BA.2 lineages. By generating 10,403 Omicron genomes, we show that Aotearoa New Zealand observed an influx of these immune-evasive variants (BA.2.12.1, BA.4, and BA.5) through the border. This is explained by the return to significant levels of international travel following the border's reopening in March 2022. We estimate one Omicron transmission event from the border to the community for every ~5,000 passenger arrivals at the current levels of travel and restriction. Although most of these introductions did not instigate any detected onward transmission, a small minority triggered large outbreaks. Genomic surveillance at the border provides a lens on the rate at which new variants might gain a foothold and trigger new waves of infection.
  • Loading...
    Thumbnail Image
    Item
    Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2 with grinch
    (F1000 Research Limited, 2021-09-17) O'Toole Á; Hill V; Pybus OG; Watts A; Bogoch II; Khan K; Messina JP; COVID-19 Genomics UK (COG-UK) consortium; Network for Genomic Surveillance in South Africa (NGS-SA); Brazil-UK CADDE Genomic Network; Tegally H; Lessells RR; Giandhari J; Pillay S; Tumedi KA; Nyepetsi G; Kebabonye M; Matsheka M; Mine M; Tokajian S; Hassan H; Salloum T; Merhi G; Koweyes J; Geoghegan JL; de Ligt J; Ren X; Storey M; Freed NE; Pattabiraman C; Prasad P; Desai AS; Vasanthapuram R; Schulz TF; Steinbrück L; Stadler T; Swiss Viollier Sequencing Consortium; Parisi A; Bianco A; García de Viedma D; Buenestado-Serrano S; Borges V; Isidro J; Duarte S; Gomes JP; Zuckerman NS; Mandelboim M; Mor O; Seemann T; Arnott A; Draper J; Gall M; Rawlinson W; Deveson I; Schlebusch S; McMahon J; Leong L; Lim CK; Chironna M; Loconsole D; Bal A; Josset L; Holmes E; St George K; Lasek-Nesselquist E; Sikkema RS; Oude Munnink B; Koopmans M; Brytting M; Sudha Rani V; Pavani S; Smura T; Heim A; Kurkela S; Umair M; Salman M; Bartolini B; Rueca M; Drosten C; Wolff T; Silander O; Eggink D; Reusken C; Vennema H; Park A; Carrington C; Sahadeo N; Carr M; Gonzalez G; SEARCH Alliance San Diego; National Virus Reference Laboratory; SeqCOVID-Spain; Danish Covid-19 Genome Consortium (DCGC); Communicable Diseases Genomic Network (CDGN); Dutch National SARS-CoV-2 surveillance program; Division of Emerging Infectious Diseases (KDCA); de Oliveira T; Faria N; Rambaut A; Kraemer MUG
    Late in 2020, two genetically-distinct clusters of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with mutations of biological concern were reported, one in the United Kingdom and one in South Africa. Using a combination of data from routine surveillance, genomic sequencing and international travel we track the international dispersal of lineages B.1.1.7 and B.1.351 (variant 501Y-V2). We account for potential biases in genomic surveillance efforts by including passenger volumes from location of where the lineage was first reported, London and South Africa respectively. Using the software tool grinch (global report investigating novel coronavirus haplotypes), we track the international spread of lineages of concern with automated daily reports, Further, we have built a custom tracking website (cov-lineages.org/global_report.html) which hosts this daily report and will continue to include novel SARS-CoV-2 lineages of concern as they are detected.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings