Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gleed RD"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Etorphine induces pathophysiology in immobilized white rhinoceros through sympathomimesis that is attenuated by butorphanol
    (y Oxford University Press and the Society for Experimental Biology, 2025-04-04) Boesch JM; Gleed RD; Buss PE; Tordiffe ASW; Zeiler GE; Miller MA; Viljoen F; Harvey BH; Parry SA; Meyer LCR; Madliger C
    White rhinoceros are a sentinel species for important ecosystems in southern Africa. Their conservation requires active management of their population, which, in turn, requires immobilization of individuals with an ultra-potent opioid such as etorphine. Unfortunately, when immobilized with etorphine, they develop severe hypoxaemia that may contribute to morbidity and mortality. We hypothesized that (i) etorphine causes sympathetic upregulation that is responsible for physiological complications that produce hypoxaemia and (ii) butorphanol, a partial μ opioid agonist, mitigates sympathetic upregulation, thereby improving arterial oxygen content (CaO2) and delivery (DO2). Six subadult male white rhinoceros were administered two treatments in random order: etorphine-saline (ES) and etorphine-butorphanol (EB). After intramuscular etorphine (~2.6 μg kg−1), rhinoceros became recumbent (time 0 min [t0]) and were instrumented. Baseline data were collected at t30, butorphanol (0.026 mg/kg) or 0.9% saline was administered intravenously at t37, and data were collected again at t40 and t50. At baseline, plasma noradrenaline concentration was >40 ng ml−1, approximately twice that of non-immobilized rhinoceros (t test, P < 0.05); cardiac output (Qt, by thermodilution) and metabolic rate (VO2, by spirometry/indirect calorimetry) were greater than predicted allometrically (t test, P < 0.05), and pulmonary hypertension was present. After butorphanol, noradrenaline concentration remained greater than in non-immobilized rhinoceros; in EB, CaO2 was greater, while Qt, DO2, VO2, and pulmonary pressures were less than in ES (linear mixed effect model, all P < 0.05). Increased noradrenaline concentration with increased Qt and hypermetabolism supports etorphine-induced sympathetic upregulation. Butorphanol partly attenuated these effects, increasing CaO2 but reducing Qt and, thus, DO2. Since plasma noradrenaline concentration remained increased after butorphanol administration while Qt, DO2, and VO2 decreased, a pathway independent of plasma noradrenaline concentration might contribute to the cardiopulmonary and hypermetabolic effects of etorphine. Developing treatments to combat this sympathomimesis could reduce capture-related morbidity in white rhinoceros.
  • Loading...
    Thumbnail Image
    Item
    Muscle tremors observed in white rhinoceroses immobilised with either etorphine-azaperone or etorphine-midazolam: An initial study
    (AOSIS, 2021-06-28) Nasr M; Meyer LCR; Buss P; Fàbregas MC; Gleed RD; Boesch JM; Pohlin F
    Etorphine-azaperone is the most commonly used drug combination for chemical immobilisation of free-ranging white rhinoceroses, but causes several profound physiological disturbances, including muscle tremors. The addition of benzodiazepine sedatives, such as midazolam, has been proposed to reduce the muscular rigidity and tremors in immobilised rhinoceroses. Twenty-three free-ranging, sub-adult white rhinoceros bulls were darted and captured using a combination of etorphine plus either azaperone or midazolam. Skeletal muscle tremors were visually evaluated and scored by an experienced veterinarian, and tremor scores and distance run were compared between groups using the Wilcoxon rank sum test. No statistical differences were observed in tremor scores (p = 0.435) or distance run (p = 0.711) between the two groups, and no correlation between these variables was detected (r = -0.628; p = 0.807). Etorphine-midazolam was as effective as etorphine-azaperone at immobilising rhinoceroses, with animals running similar distances. Although the addition of midazolam to the etorphine did not reduce tremor scores compared to azaperone, it might have other beneficial immobilising effects in rhinoceroses, and further investigation is necessary to elucidate possible methods of reducing muscle tremoring during chemical immobilisation of rhinoceroses.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings