SCHEDULED SYSTEM MAINTENANCE – Monday 6 October to Tuesday 7 October 2025. We expect no disruption to services. For further assistance please contact the Library team, library@massey.ac.nz
Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Goldfedder B"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Forecasting the publication and citation outcomes of COVID-19 preprints
    (The Royal Society, 2022-09) Gordon M; Bishop M; Chen Y; Dreber A; Goldfedder B; Holzmeister F; Johannesson M; Liu Y; Tran L; Twardy C; Wang J; Pfeiffer T
    Many publications on COVID-19 were released on preprint servers such as medRxiv and bioRxiv. It is unknown how reliable these preprints are, and which ones will eventually be published in scientific journals. In this study, we use crowdsourced human forecasts to predict publication outcomes and future citation counts for a sample of 400 preprints with high Altmetric score. Most of these preprints were published within 1 year of upload on a preprint server (70%), with a considerable fraction (45%) appearing in a high-impact journal with a journal impact factor of at least 10. On average, the preprints received 162 citations within the first year. We found that forecasters can predict if preprints will be published after 1 year and if the publishing journal has high impact. Forecasts are also informative with respect to Google Scholar citations within 1 year of upload on a preprint server. For both types of assessment, we found statistically significant positive correlations between forecasts and observed outcomes. While the forecasts can help to provide a preliminary assessment of preprints at a faster pace than traditional peer-review, it remains to be investigated if such an assessment is suited to identify methodological problems in preprints.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings