Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hajduk H"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Locally energy-stable finite element schemes for incompressible flow problems: Design and analysis for equal-order interpolations
    (Elsevier Ltd, 2025-05-30) Hajduk H; Kuzmin D; Lube G; Öffner P
    We show that finite element discretizations of incompressible flow problems can be designed to ensure preservation/dissipation of kinetic energy not only globally but also locally. In the context of equal-order (piecewise-linear) interpolations, we prove the validity of a semi-discrete energy inequality for a quadrature-based approximation to the nonlinear convective term, which we combine with the Becker–Hansbo pressure stabilization. An analogy with entropy-stable algebraic flux correction schemes for the compressible Euler equations and the shallow water equations yields a weak ‘bounded variation’ estimate from which we deduce the semi-discrete Lax–Wendroff consistency and convergence towards dissipative weak solutions. The results of our numerical experiments for standard test problems confirm that the method under investigation is non-oscillatory and exhibits optimal convergence behavior.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify