Browsing by Author "Hegarty RS"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemA regional-scale assessment of nutritional-system strategies for abatement of enteric methane from grazing livestock(CSIRO Publishing, 2023-08-15) Almeida AK; Cowley FC; Hegarty RS; Yanez-Ruiz DProgress towards methane (CH4) mitigation for the red meat, milk and wool sectors in Australia and reduced CH4 emissions intensity (g CH4/kg animal product, typically milk or liveweight gain) involves not only reduced net emissions but also improved productive efficiency. Although nutritional additives have potential to reduce CH4 production rate of livestock (g CH4/head.day), systemic improvement of the nutrition of grazing breeding females, the largest source of CH4 emissions in Australian agriculture, will also be required to reduce emissions intensity. Systemic changes that increase productive efficiency for producers are part of the economic and environmental 'win-win' of reducing emissions intensity, and so offer good potential for adoption by industry. For sheep and cattle breeding enterprises, improved nutrition to achieve a younger age at first joining and increased reproductive rate will reduce the proportion of CH4-emitting, but unproductive, animals in a herd. However, if breeding stock are managed to be more productive (e.g. by superior nutrition leading to greater product/breeder) and more efficient (e.g. greater product per kilogram DMI) the producer is faced with the following management challenge. Should the enterprise increase stock numbers to utilise surplus feed and gain extra product, or reduce stock numbers to maintain previous product output with smaller enterprise net emissions (and emissions intensity), and so make land available for other uses (e.g.Tree plantings, conservation zones). The right balance of incentives and price on carbon is necessary to achieve a result whereby total emissions from Australian agriculture are reduced, and so a positive impact on climate change is achieved.
- ItemEffect of 3-nitrooxypropanol on enteric methane emissions of feedlot cattle fed with a tempered barley-based diet with canola oil(Oxford University Press on behalf of the American Society of Animal Science, 2023-07-10) Almeida AK; Cowley F; McMeniman JP; Karagiannis A; Walker N; Tamassia LFM; McGrath JJ; Hegarty RSA dose-response experiment was designed to examine the effect of 3-nitrooxypropanol (3-NOP) on methane (CH4) emissions, rumen function and performance of feedlot cattle fed a tempered barley-based diet with canola oil. Twenty Angus steers of initial body weight (BW) of 356 ± 14.4 kg were allocated in a randomized complete block design. Initial BW was used as the blocking criterion. Cattle were housed in individual indoor pens for 112 d, including the first 21 d of adaptation followed by a 90-d finishing period when five different 3-NOP inclusion rates were compared: 0 mg/kg dry matter (DM; control), 50 mg/kg DM, 75 mg/kg DM, 100 mg/kg DM, and 125 mg/kg DM. Daily CH4 production was measured on day 7 (last day of starter diet), day 14 (last day of the first intermediate diet), and day 21 (last day of the second intermediate diet) of the adaptation period and on days 28, 49, 70, 91, and 112 of the finisher period using open circuit respiration chambers. Rumen digesta samples were collected from each steer on the day prior to chamber measurement postfeeding, and prefeeding on the day after the chamber measurement, for determination of rumen volatile fatty acids (VFA), ammonium-N, protozoa enumeration, pH, and reduction potential. Dry matter intake (DMI) was recorded daily and BW weekly. Data were analyzed in a mixed model including period, 3-NOP dose and their interaction as fixed effects, and block as a random effect. Our results demonstrated both a linear and quadratic (decreasing rate of change) effect on CH4 production (g/d) and CH4 yield (g/kg DMI) as 3-NOP dose increased (P < 0.01). The achieved mitigation for CH4 yield in our study ranged from approximately 65.5% up to 87.6% relative to control steers fed a finishing feedlot diet. Our results revealed that 3-NOP dose did not alter rumen fermentation parameters such as ammonium-N, VFA concentration nor VFA molar proportions. Although this experimental design was not focused on the effect of 3-NOP dose on feedlot performance, no negative effects of any 3-NOP dose were detected on animal production parameters. Ultimately, the knowledge on the CH4 suppression pattern of 3-NOP may facilitate sustainable pathways for the feedlot industry to lower its carbon footprint.
- ItemMeta-analysis quantifying the potential of dietary additives and rumen modifiers for methane mitigation in ruminant production systems(Elsevier B.V. on behalf of KeAi Communications Co. Ltd, 2021-12) Almeida AK; Hegarty RS; Cowie AIncreasingly countries are seeking to reduce emission of greenhouse gases from the agricultural industries, and livestock production in particular, as part of their climate change management. While many reviews update progress in mitigation research, a quantitative assessment of the efficacy and performance-consequences of nutritional strategies to mitigate enteric methane (CH4) emissions from ruminants has been lacking. A meta-analysis was conducted based on 108 refereed papers from recent animal studies (2000-2020) to report effects on CH4 production, CH4 yield and CH4 emission intensity from 8 dietary interventions. The interventions (oils, microalgae, nitrate, ionophores, protozoal control, phytochemicals, essential oils and 3-nitrooxypropanol). Of these, macroalgae and 3-nitrooxypropanol showed greatest efficacy in reducing CH4 yield (g CH4/kg of dry matter intake) at the doses trialled. The confidence intervals derived for the mitigation efficacies could be applied to estimate the potential to reduce national livestock emissions through the implementation of these dietary interventions.