Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Javan RR"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Diverse Streptococcus pneumoniae Strains Drive a Mucosal-Associated Invariant T-Cell Response Through Major Histocompatibility Complex class I-Related Molecule-Dependent and Cytokine-Driven Pathways.
    (Oxford University Press, 2018-03-15) Kurioka A; van Wilgenburg B; Javan RR; Hoyle R; van Tonder AJ; Harrold CL; Leng T; Howson LJ; Shepherd D; Cerundolo V; Brueggemann AB; Klenerman P
    Mucosal-associated invariant T (MAIT) cells represent an innate T-cell population that can recognize ligands generated by the microbial riboflavin synthesis pathway, presented via the major histocompatibility complex class I-related molecule (MR1). Streptococcus pneumoniae is a major human pathogen that is also associated with commensal carriage; thus, host control at the mucosal interface is critical. The recognition of pneumococci by MAIT cells has not been defined nor have the genomics and transcriptomics of the riboflavin operon. We observed robust recognition of pneumococci by MAIT cells, using both MR1-dependent and MR1-independent pathways. The pathway used was dependent on the antigen-presenting cell. The riboflavin operon was highly conserved across a range of 571 pneumococci from 39 countries, dating back to 1916, and different versions of the riboflavin operon were also identified in related Streptococcus species. These data indicate an important functional relationship between MAIT cells and pneumococci.
  • Loading...
    Thumbnail Image
    Item
    Genome sequencing reveals a large and diverse repertoire of antimicrobial peptides
    (Frontiers Media S.A., 2018-08-27) Javan RR; Van Tonder AJ; King JP; Harrold CL; Brueggemann AB; Mandal SM
    Competition among bacterial members of the same ecological niche is mediated by bacteriocins: antimicrobial peptides produced by bacterial species to kill other bacteria. Bacteriocins are also promising candidates for novel antimicrobials. Streptococcus pneumoniae (the "pneumococcus") is a leading cause of morbidity and mortality worldwide and a frequent colonizer of the human nasopharynx. Here, 14 newly discovered bacteriocin gene clusters were identified among > 6,200 pneumococcal genomes. The molecular epidemiology of the bacteriocin clusters was investigated using a large global and historical pneumococcal dataset dating from 1916. These analyses revealed extraordinary bacteriocin diversity among pneumococci and the majority of bacteriocin clusters were also found in other streptococcal species. Genomic hotspots for the integration of different bacteriocin gene clusters were discovered. Experimentally, bacteriocin genes were transcriptionally active when the pneumococcus was under stress and when two strains were co-cultured in broth. These findings reveal much more diversity among bacterial defense mechanisms than previously appreciated, which fundamentally broaden our understanding of bacteriocins relative to intraspecies and interspecies nasopharyngeal competition and bacterial population structure.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify