Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Jones, G."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Convergence of alternating Markov chains
    (2005) Jones, G.; Alexander, D.L.J.
    Suppose we have two Markov chains defined on the same state space. What happens if we alternate them? If they both converge to the same stationary distribution, will the chain obtained by alternating them also converge? Consideration of these questions is motivated by the possible use of two different updating schemes for MCMC estimation, when much faster convergence can be achieved by alternating both schemes than by using either singly.
  • Loading...
    Thumbnail Image
    Item
    Some properties of transition matrices for chain binomial models
    (Massey University, 2005) Jones, G.
    A chain binomial model is a Markov chain with a transition matrix whose rows are binomial probabilities. Two such chains are presented and illustrated with possible applications. The paper will focus in particular on some interesting properties of the transition matrices.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings