Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kanojia A"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Developmentally controlled changes during Arabidopsis leaf development indicate causes for loss of stress tolerance with age
    (Oxford University Press on behalf of the Society for Experimental Biology, 2020-10-22) Kanojia A; Gupta S; Benina M; Fernie AR; Mueller-Roeber B; Gechev T; Dijkwel PP; Foyer C
    Leaf senescence is the final stage of leaf development and is induced by the gradual occurrence of age-related changes (ARCs). The process of leaf senescence has been well described, but the cellular events leading to this process are still poorly understood. By analysis of progressively ageing, but not yet senescing, Arabidopsis thaliana rosette leaves, we aimed to better understand processes occurring prior to the onset of senescence. Using gene expression analysis, we found that as leaves mature, genes responding to oxidative stress and genes involved in stress hormone biosynthesis and signalling were up-regulated. A decrease in primary metabolites that provide protection against oxidative stress was a possible explanation for the increased stress signature. The gene expression and metabolomics changes occurred concomitantly to a decrease in drought, salinity, and dark stress tolerance of individual leaves. Importantly, stress-related genes showed elevated expression in the early ageing mutant old5 and decreased expression in the delayed ageing mutant ore9. We propose that the decreased stress tolerance with age results from the occurrence of senescence-inducing ARCs that is integrated into the leaf developmental programme, and that this ensures a timely and certain death.
  • Loading...
    Thumbnail Image
    Item
    Primary metabolic processes as drivers of leaf ageing
    (Springer Nature Switzerland AG, 2021-10) Kanojia A; Shrestha DK; Dijkwel PP
    Ageing in plants is a highly coordinated and complex process that starts with the birth of the plant or plant organ and ends with its death. A vivid manifestation of the final stage of leaf ageing is exemplified by the autumn colours of deciduous trees. Over the past decades, technological advances have allowed plant ageing to be studied on a systems biology level, by means of multi-omics approaches. Here, we review some of these studies and argue that these provide strong support for basic metabolic processes as drivers for ageing. In particular, core cellular processes that control the metabolism of chlorophyll, amino acids, sugars, DNA and reactive oxygen species correlate with leaf ageing. However, while multi-omics studies excel at identifying correlative processes and pathways, molecular genetic approaches can provide proof that such processes and pathways control ageing, by means of knock-out and ectopic expression of predicted regulatory genes. Therefore, we also review historic and current molecular evidence to directly test the hypotheses unveiled by the systems biology approaches. We found that the molecular genetic approaches, by and large, confirm the multi-omics-derived hypotheses with notable exceptions, where there is scant evidence that chlorophyll and DNA metabolism are important drivers of leaf ageing. We present a model that summarises the core cellular processes that drive leaf ageing and propose that developmental processes are tightly linked to primary metabolism to inevitably lead to ageing and death.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify