Browsing by Author "Legg M"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemUltrasonic Arrays for Remote Sensing of Pasture Biomass(MDPI (Basel, Switzerland), 2020-01) Legg M; Bradley SThe profitability of agricultural industries that utilise pasture can be strongly affected by the ability to accurately measure pasture biomass. Pasture height measurement is one technique that has been used to estimate pasture biomass. However, pasture height measurement errors can occur if the sensor is mounted to a farm vehicle that experiences tilting or bouncing. This work describes the development of novel low ultrasonic frequency arrays for pasture biomass estimation. Rather than just measuring the distance to the top of the pasture, as previous ultrasonic studies have done, this hardware is designed to also allow ultrasonic measurements to be made vertically through the pasture to the ground. The hardware was mounted to a farm bike driving over pasture at speeds of up to 20 km/h. The analysed results show the ability of the hardware to measure the ground location through the grass. This allowed pasture height measurement to be independent of tilting and bouncing of the farm vehicle, leading to 20 to 25% improvement in the R2 value obtained for biomass estimation compared with the traditional technique. This corresponded to a reduction in root mean squared error of predicted biomass from about 350 to 270 kg/ha, where the average biomass of the pasture was 1915 kg/ha.
- ItemVisible Light Positioning-Based Robot Localization and Navigation(MDPI (Basel, Switzerland), 2024-01-01) Chew M-T; Alam F; Noble FK; Legg M; Gupta GS; Pak JMVisible light positioning or VLP has been identified as a promising technique for accurate indoor localization utilizing pre-existing lighting infrastructure. Robot navigation is one of the many potential applications of VLP. Recent literature shows a small number of works on robots being controlled by fusing location information acquired via VLP that uses a rolling shutter effect camera as a receiver with other sensor data. This paper, in contrast, reports on the experimental performance of a cartesian robot that was controlled solely by a VLP system using a cheap photodiode-based receiver rigidly attached to the robot’s end-effector. The receiver’s position was computed using an inverse-Lambertian function for ranging followed by multi-lateration. We developed two novel methods to leverage the VLP as an online navigation system to control the robot. The position acquired from the VLP was used by the algorithms to determine the direction the robot needed to move. The developed algorithms guided the end-effector to move from a starting point to target/destination point(s) in a discrete manner, determined by a pre-determined step size. Our experiments consisted of the robot autonomously repeating straight line-, square- and butterfly-shaped paths multiple times. The results show median errors of 27.16 mm and 26.05 mm and 90 percentile errors of 37.04 mm and 47.48 mm, respectively, for the two methods.