Browsing by Author "Leong KSW"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemLong-term health outcomes in adolescents with obesity treated with faecal microbiota transplantation: 4-year follow-up(Springer Nature Limited, 2025-08-28) Wilson BC; Zuppi M; Derraik JGB; Albert BB; Tweedie-Cullen RY; Leong KSW; Beck KL; Vatanen T; O'Sullivan JM; Cutfield WS; Study Group GBFaecal microbiota transplantation (FMT) has been explored as a potential treatment for obesity, but its long-term effects on metabolic health remain unclear. Here, we report 4-year follow-up findings from a double-blind, randomised, placebo-controlled trial assessing FMT in adolescents with obesity (ACTRN12615001351505, Australian New Zealand Clinical Trials Registry). This unblinded follow-up study evaluated 63% (55/87) of the original participants (27 FMT, 28 placebo). There was no difference in BMI between the two groups, after adjusting for sex, age, diet, and physical activity (-3.6 kg/m2, p = 0.095). However, FMT recipients showed clinical improvements in body composition and metabolic health compared to the placebo group. Specifically, FMT recipients had smaller waist circumference (-10.0 cm, p = 0.026), total body fat (-4.8%, p = 0.024), metabolic syndrome severity score (-0.58, p = 0.003), and systemic inflammation (-68% hs-CRP, p = 0.002) and higher levels of HDL cholesterol (0.16 mmol/L, p = 0.037). No group differences were observed in glucose markers, or other lipid parameters. Shotgun metagenomic sequencing revealed sustained long-term alterations in gut microbiome richness, composition and functional capacity, with persistence of donor-derived bacterial and bacteriophage strains. These findings highlight the potential relevance of FMT as a microbiome-augmenting intervention for obesity management and metabolic health, warranting further investigation.
- ItemStrain engraftment competition and functional augmentation in a multi-donor fecal microbiota transplantation trial for obesity(BioMed Central Ltd, 2021-12) Wilson BC; Vatanen T; Jayasinghe TN; Leong KSW; Derraik JGB; Albert BB; Chiavaroli V; Svirskis DM; Beck KL; Conlon CA; Jiang Y; Schierding W; Holland DJ; Cutfield WS; O'Sullivan JMBackground Donor selection is an important factor influencing the engraftment and efficacy of fecal microbiota transplantation (FMT) for complex conditions associated with microbial dysbiosis. However, the degree, variation, and stability of strain engraftment have not yet been assessed in the context of multiple donors. Methods We conducted a double-blinded randomized control trial of FMT in 87 adolescents with obesity. Participants were randomized to receive multi-donor FMT (capsules containing the fecal microbiota of four sex-matched lean donors) or placebo (saline capsules). Following a bowel cleanse, participants ingested a total of 28 capsules over two consecutive days. Capsules from individual donors and participant stool samples collected at baseline, 6, 12, and 26 weeks post-treatment were analyzed by shotgun metagenomic sequencing allowing us to track bacterial strain engraftment and its functional implications on recipients’ gut microbiomes. Results Multi-donor FMT sustainably altered the structure and the function of the gut microbiome. In what was effectively a microbiome competition experiment, we discovered that two donor microbiomes (one female, one male) dominated strain engraftment and were characterized by high microbial diversity and a high Prevotella to Bacteroides (P/B) ratio. Engrafted strains led to enterotype-level shifts in community composition and provided genes that altered the metabolic potential of the community. Despite our attempts to standardize FMT dose and origin, FMT recipients varied widely in their engraftment of donor strains. Conclusion Our study provides evidence for the existence of FMT super-donors whose microbiomes are highly effective at engrafting in the recipient gut. Dominant engrafting male and female donor microbiomes harbored diverse microbial species and genes and were characterized by a high P/B ratio. Yet, the high variability of strain engraftment among FMT recipients suggests the host environment also plays a critical role in mediating FMT receptivity. Trial registration The Gut Bugs trial was registered with the Australian New Zealand Clinical Trials Registry (ACTRN12615001351505). Trial protocol The trial protocol is available at https://bmjopen.bmj.com/content/9/4/e026174.
