Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Marshall, Jonathan Craig"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Holomorphic solutions to functional differential equations : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University, Palmerston North, New Zealand
    (Massey University, 2005) Marshall, Jonathan Craig; Marshall, Jonathan Craig
    Functional differential equations with an entire functional argument g are examined and theory regarding the presence of holomorphic solutions to these equations presented. There are two main problems analysed, each related to the other. The first is the existence of local holomorphic solutions about a point fixed under g, and the second is the analytic continuation of such a solution throughout the complex plane. The local behaviour of g about its fixed points determines whether holomorphic solutions exist about such points, whilst the global behaviour of g under iteration determines the analytic continuation of these solutions. The dynamics of the functional argument g, therefore, is the driving force in both problems. Both a local and global theory is developed for the existence of solutions, and for defining where such solutions are holomorphic. The case where g is a polynomial is considered in detail, although much of the theory applies equally well to the general case where g is entire.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify