SCHEDULED SYSTEM MAINTENANCE – Monday 6 October to Tuesday 7 October 2025. We expect no disruption to services. For further assistance please contact the Library team, library@massey.ac.nz
Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mastakov M"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Combined injection of rAAV with mannitol enhances gene expression in the rat brain
    (Cell Press, 6/09/2000) Mastakov M; Baer K; Xu R; Fitzsimons H; During M
    Recombinant adeno-associated viruses (rAAV) are highly efficient vectors for gene transfer into the central nervous system (CNS). However, a major hurdle for gene delivery to the mammalian brain is to achieve high-level transduction in target cells beyond the immediate injection site. Therefore, in addition to improvements in expression cassettes and viral titers, optimal injection parameters need to be defined. Here, we show that previous studies of somatic cell gene transfer to the mammalian brain have used suboptimal injection parameters, with even the lowest reported perfusion rates still excessively fast. Moreover, we evaluated the effect of local administration of mannitol to further enhance transgene expression and vector spread. Ultraslow microperfusion of rAAV, i.e., <33 nl/min, resulted in significantly higher gene expression and less injury of surrounding tissue than the previously reported rates of 100 nl/min or faster. Co-infusion of mannitol facilitated gene transfer to neurons, increasing both the total number and the distribution of transduced cells by 200-300%. Gene transfer studies in the CNS using rAAV should use very slow infusion rates and combined injection with mannitol to maximize transduction efficiency and spread.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings