Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "McGoverin C"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Distinguishing plant and milk proteins and their interactions in hybrid cheese using confocal Raman microscopy with machine learning
    (Elsevier Limited, United Kingdom, 2026-01-01) Lu D; McGoverin C; Roy D; Acevedo-Fani A; Singh H; Waterland M; Zheng Y; Ye A
    The increasing demand for plant-based alternatives to milk protein has led to the development of hybrid processed cheese analogues (HPCAs) combining plant proteins and casein. However, their complex microstructure and molecular interactions remain poorly understood. This study integrated confocal Raman spectroscopy with advanced machine learning for high-resolution spatial mapping and molecular characterization of HPCAs containing mung bean protein isolate (MPI) or hemp protein isolate (HPI) with casein. This integration helped distinguish between protein sources and elucidate structural changes. The addition of casein changed the HPI structure, promoting structural disorder, disulfide bond rearrangement, and a sharp decrease in the tyrosine doublet ratio from 4.5 in HPI100 to 1.2 in HPI50. Conversely, casein interaction with MPI led to microstructural segregation and changes of β-sheet content (from 53 % in MPI100 to 20 % in MPI30). This integrated method represents a powerful tool for analysing protein structure and interactions in complex food systems.

Copyright © Massey University  |  DSpace software copyright © 2002-2026 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify