Browsing by Author "McNabb WC"
Now showing 1 - 19 of 19
Results Per Page
Sort Options
- ItemA Mathematical Model for the Hydrogenotrophic Metabolism of Sulphate-Reducing Bacteria.(Frontiers Media S.A., 2019-07-17) Smith NW; Shorten PR; Altermann E; Roy NC; McNabb WC; Greening CSulphate-reducing bacteria (SRB) are studied across a range of scientific fields due to their characteristic ability to metabolise sulphate and produce hydrogen sulphide, which can lead to significant consequences for human activities. Importantly, they are members of the human gastrointestinal microbial population, contributing to the metabolism of dietary and host secreted molecules found in this environment. The role of the microbiota in host digestion is well studied, but the full role of SRB in this process has not been established. Moreover, from a human health perspective, SRB have been implicated in a number of functional gastrointestinal disorders such as Irritable Bowel Syndrome and the development of colorectal cancer. To assist with the study of SRB, we present a mathematical model for the growth and metabolism of the well-studied SRB, Desulfovibrio vulgaris in a closed system. Previous attempts to model SRB have resulted in complex or highly specific models that are not easily adapted to the study of SRB in different environments, such as the gastrointestinal tract. We propose a simpler, Monod-based model that allows for easy alteration of both key parameter values and the governing equations to enable model adaptation. To prevent any incorrect assumptions about the nature of SRB metabolic pathways, we structure the model to consider only the concentrations of initial and final metabolites in a pathway, which circumvents the current uncertainty around hydrogen cycling by SRB. We parameterise our model using experiments with varied initial substrate conditions, obtaining parameter values that compare well with experimental estimates in the literature. We then validate our model against four independent experiments involving D. vulgaris with further variations to substrate availability. Further use of the model will be possible in a number of settings, notably as part of larger models studying the metabolic interactions between SRB and other hydrogenotrophic microbes in the human gastrointestinal tract and how this relates to functional disorders.
- ItemActinidin in Green and SunGold Kiwifruit Improves Digestion of Alternative Proteins-An In Vitro Investigation(MDPI (Basel, Switzerland), 2022-09-06) Kaur L; Mao B; Bailly J; Oladeji O; Blatchford P; McNabb WC; Recio IBoth Hayward (green) and SunGold (gold) kiwifruit varieties contain a proteolytic enzyme, actinidin, that has been reported to enhance the upper tract digestion of animal proteins. Unlike the other gold varieties, which do not contain any actinidin, the SunGold variety contains significantly higher actinidin activity, but its activity is still much lower than that present in the green (Hayward) fruit. The objective of this study was to determine the effectiveness of actinidin in Hayward and SunGold kiwifruit in digesting alternative proteins, including pea protein, almonds, tofu, and quinoa. The protein sources were digested using a three-stage in vitro oral-gastro-small intestinal digestion model. The findings showed that both kiwifruit extracts enhanced the breakdown (observed through SDS-PAGE) for all the studied protein sources, particularly during gastric digestion, possibly due to higher actinidin activity at gastric pH. The increase in the rate of protein breakdown was probably due to the broader specificity of actinidin compared to pepsin. For many protein sources, most of the intact proteins disappeared within the first few minutes of gastric digestion with added kiwifruit extract. Green kiwifruit extract, due to its higher actinidin activity, had a higher effect on protein breakdown than the SunGold extract. However, for some proteins and under certain digestion conditions, SunGold extract resulted in higher protein breakdown. The latter, in the absence of any digestive enzymes, also led to some protein breakdown during the small intestinal digestion phase, which was not the case for the green kiwifruit extract. The green kiwifruit extract led to the greater breakdown of polypeptide chains of Pru-du 6, a major allergen in almonds. The results, for the first time, suggest that both Hayward and SunGold kiwifruit can lead to improved breakdown and digestion of alternative proteins when consumed as part of a meal; and therefore, have the potential to be used as a digestive aid in population groups looking to achieve faster and greater protein digestion such as athletes, elderly and people with the impaired digestive system.
- ItemAcute effects of fresh versus dried Hayward green kiwifruit on sleep quality, mood, and sleep-related urinary metabolites in healthy young men with good and poor sleep quality(Frontiers Media S.A., 2023-03-14) Kanon AP; Giezenaar C; Roy NC; McNabb WC; Henare SJ; Scholey ABackground and aims: Daily kiwifruit (KF) consumption has been associated with improved sleep quality, but underlying physiological mechanisms are unknown. This study examined acute effects of fresh and dried green KF, compared with a water control, on sleep quality, mood, and urinary serotonin and melatonin metabolite concentrations. Methods: 24 men (age: 29 ± 1 years, body mass index: 24 ± 1 kg/m2) with poor (n = 12) or good (n = 12) sleep quality participated in a randomized, single-blind crossover study. One of three treatments was consumed with a standardized evening meal; (1) the flesh of two fresh green KF, (2) dried green KF powder (including skin; equivalent to dry matter of two fresh KF) mixed with water, or (3) a water control, in their own home. Subjective and objective sleep quality, mood, waking urinary 5-hydroxyindoleacetic acid (5-HIAA), 6-sulfatoxymelatonin (aMT6s), vitamin C and B-vitamin concentrations were determined. Results: Regardless of sleep quality group, compared to control, morning sleepiness, alertness upon awakening, and vigor were improved (p < 0.05) after dried KF consumption. Compared to control, both fresh and dried KF treatments tended (p < 0.1) toward improved esteem and total mood disturbance. Both KF treatments increased (fresh +1.56 ± 0.4 ng/g, p = 0.001; dried: +1.30 ± 0.4 ng/g, p = 0.004) urinary concentration of the serotonin metabolite 5-HIAA compared to the control (4.32 ± 0.4 ng/g). In poor sleepers, ease of awakening improved by 24% after dried KF consumption (p = 0.005) and tended to improve by 13% after fresh KF intake (p = 0.052) compared to the control. Good sleepers tended toward 9% improved ratings of getting to sleep with fresh KF (p = 0.053) compared to the control. Poor sleepers had lower amounts of some B-vitamins compared to good sleepers (p < 0.05). Conclusion: Consumption of dried or fresh KF with a standard evening meal, was associated with improved aspects of sleep quality and mood, possibly mediated through changes in serotonin metabolism. Clinical trial registration: [www.anzctr.org.au], identifier [ACTRN12621000046808].
- ItemCompetition for Hydrogen Prevents Coexistence of Human Gastrointestinal Hydrogenotrophs in Continuous Culture.(Frontiers Media S.A., 2020-05-29) Smith NW; Shorten PR; Altermann E; Roy NC; McNabb WC; Kappler UUnderstanding the metabolic dynamics of the human gastrointestinal tract (GIT) microbiota is of growing importance as research continues to link the microbiome to host health status. Microbial strains that metabolize hydrogen have been associated with a variety of both positive and negative host nutritional and health outcomes, but limited data exists for their competition in the GIT. To enable greater insight into the behaviour of these microbes, a mathematical model was developed for the metabolism and growth of the three major hydrogenotrophic groups: sulphate-reducing bacteria (SRB), methanogens and reductive acetogens. In batch culture simulations with abundant sulphate and hydrogen, the SRB outcompeted the methanogen for hydrogen due to having a half-saturation constant 106 times lower than that of the methanogen. The acetogen, with a high model threshold for hydrogen uptake of around 70 mM, was the least competitive. Under high lactate and zero sulphate conditions, hydrogen exchange between the SRB and the methanogen was the dominant interaction. The methanogen grew at 70% the rate of the SRB, with negligible acetogen growth. In continuous culture simulations, both the SRB and the methanogen were washed out at dilution rates above 0.15 h-1 regardless of substrate availability, whereas the acetogen could survive under abundant hydrogen conditions. Specific combinations of conditions were required for survival of more than one hydrogenotroph in continuous culture, and survival of all three was not possible. The stringency of these requirements and the inability of the model to simulate survival of all three hydrogenotrophs in continuous culture demonstrates that factors outside of those modelled are vital to allow hydrogenotroph coexistence in the GIT.
- ItemComplete Annotated Genome Sequence of Limosilactobacillus fermentum AGR1487.(American Society for Microbiology, 2021-01-07) Bailie MA; Altermann E; Young W; Roy NC; McNabb WC; Putonti CLimosilactobacillus fermentum is a probiotic species; however, L. fermentum AGR1487 increases colon inflammation in germfree mice and decreases barrier integrity in Caco-2 cells. The AGR1487 genome was sequenced to explore these phenotypes. The genome is a single, circular, 1,939,032-bp chromosome with a G+C content of 52.17% and no plasmids.
- ItemComplete Genome Sequence of Lactobacillus fermentum Strain AGR1485, a Human Oral Isolate.(American Society for Microbiology, 2020-09-03) Bailie MA; Altermann E; Young W; Roy NC; McNabb WC; Gill SRLactobacillus fermentum is found in food products and is generally considered safe. L. fermentum AGR1485 promotes barrier integrity in Caco-2 cells and has genetic similarities to other known probiotic L. fermentum strains. L. fermentum AGR1485 has potential as a probiotic and was sequenced to explore these probiotic properties. The genome is a 2.2-Mbp circular chromosome with no plasmids and a GC content of 51.15%.
- ItemComplete Genome Sequences of Eight Faecalibacterium sp. Strains Isolated from Healthy Human Stool(American Society for Microbiology, 2023-01-24) Fraccascia D; Chanyi RM; Altermann E; Roy NC; Flint SH; McNabb WC; Dunning Hotopp JCEight Faecalibacterium sp. strains were isolated from feces of healthy human volunteers. Here, we describe their genome sequences. The genome sizes ranged from 2.78 Mbp to 3.23 Mbp, with an average GC content of 56.6% and encoding 2,795 protein-coding genes on average.
- ItemDifferences in small intestinal apparent amino acid digestibility of raw bovine, caprine, and ovine milk are explained by gastric amino acid retention in piglets as an infant model(Frontiers Media S.A., 2023-09-04) Ahlborn NG; Montoya CA; Roy D; Roy NC; Stroebinger N; Ye A; Samuelsson LM; Moughan PJ; McNabb WC; Gallier SBACKGROUND: The rate of stomach emptying of milk from different ruminant species differs, suggesting that the small intestinal digestibility of nutrients could also differ across these milk types. OBJECTIVE: To determine the small intestinal amino acid (AA) digestibility of raw bovine, caprine, and ovine milk in the piglet as an animal model for the infant. METHODS: Seven-day-old piglets (n = 12) consumed either bovine, caprine, or ovine milk diets for 15 days (n = 4 piglets/milk). On day 15, fasted piglets received a single meal of fresh raw milk normalized for protein content and containing the indigestible marker titanium dioxide. Entire gastrointestinal tract contents were collected at 210 min postprandially. Apparent AA digestibility (disappearance) in different regions of the small intestine was determined. RESULTS: On average, 35% of the dietary AAs were apparently taken up in the small intestine during the first 210 min post-feeding, with 67% of the AA digestibility occurring in the first quarter (p ≤ 0.05) and 33% in the subsequent two quarters. Overall, except for isoleucine, valine, phenylalanine, and tyrosine, the small intestinal apparent digestibility of all AAs at 210 min postprandially in piglets fed ovine milk was, on average, 29% higher (p ≤ 0.05) than for those fed bovine milk. Except for lysine, there was no difference in the apparent digestibility (p > 0.05) of any AAs between piglets fed caprine milk or ovine milk. The apparent digestibility of alanine was higher (p ≤ 0.05) in piglets fed caprine milk than those fed bovine milk. When apparent digestibility was corrected for gastric AA retention, only small differences in the small intestinal apparent digestibility of AAs were observed across milk types. CONCLUSION: Bovine, caprine and ovine milk had different apparent small intestinal AA digestibility at 210 min postprandially. When corrected for gastric AA retention, the differences in apparent digestibility across species largely disappeared. The apparent AA digestibility differed across small intestinal locations.
- ItemEffects of early postnatal life nutritional interventions on immune-microbiome interactions in the gastrointestinal tract and implications for brain development and function(Frontiers Media S A, 2022-11-23) Mullaney JA; Roy NC; Halliday C; Young W; Altermann E; Kruger MC; Dilger RN; McNabb WC; Wang HThe gastrointestinal (GI) microbiota has co-evolved with the host in an intricate relationship for mutual benefit, however, inappropriate development of this relationship can have detrimental effects. The developing GI microbiota plays a vital role during the first 1,000 days of postnatal life, during which occurs parallel development and maturation of the GI tract, immune system, and brain. Several factors such as mode of delivery, gestational age at birth, exposure to antibiotics, host genetics, and nutrition affect the establishment and resultant composition of the GI microbiota, and therefore play a role in shaping host development. Nutrition during the first 1,000 days is considered to have the most potential in shaping microbiota structure and function, influencing its interactions with the immune system in the GI tract and consequent impact on brain development. The importance of the microbiota-GI-brain (MGB) axis is also increasingly recognized for its importance in these developmental changes. This narrative review focuses on the importance of the GI microbiota and the impact of nutrition on MGB axis during the immune system and brain developmental period in early postnatal life of infants.
- ItemEffects of Green and Gold Kiwifruit Varieties on Antioxidant Neuroprotective Potential in Pigs as a Model for Human Adults.(MDPI (Basel, Switzerland), 2024-04-09) Kanon AP; Giezenaar C; Roy NC; Jayawardana IA; Lomiwes D; Montoya CA; McNabb WC; Henare SJ; Digiacomo MKiwifruit (KF) has shown neuroprotective potential in cell-based and rodent models by augmenting the capacity of endogenous antioxidant systems. This study aimed to determine whether KF consumption modulates the antioxidant capacity of plasma and brain tissue in growing pigs. Eighteen male pigs were divided equally into three groups: (1) bread, (2) bread + Actinidia deliciosa cv. 'Hayward' (green-fleshed), and (3) bread + A. chinensis cv. 'Hort16A' (yellow-fleshed). Following consumption of the diets for eight days, plasma and brain tissue (brain stem, corpus striatum, hippocampus, and prefrontal cortex) were collected and measured for biomarkers of antioxidant capacity, enzyme activity, and protein expression assessments. Green KF significantly increased ferric-reducing antioxidant potential (FRAP) in plasma and all brain regions compared with the bread-only diet. Gold KF increased plasma ascorbate concentration and trended towards reducing acetylcholinesterase activity in the brain compared with the bread-only diet. Pearson correlation analysis revealed a significant positive correlation between FRAP in the brain stem, prefrontal cortex, and hippocampus with the total polyphenol concentration of dietary interventions. These findings provide exploratory evidence for the benefits of KF constituents in augmenting the brain's antioxidant capacity that may support neurological homeostasis during oxidative stress.
- ItemExamination of hydrogen cross-feeders using a colonic microbiota model(BioMed Central Ltd, 2021-12) Smith NW; Shorten PR; Altermann E; Roy NC; McNabb WCBACKGROUND: Hydrogen cross-feeding microbes form a functionally important subset of the human colonic microbiota. The three major hydrogenotrophic functional groups of the colon: sulphate-reducing bacteria (SRB), methanogens and reductive acetogens, have been linked to wide ranging impacts on host physiology, health and wellbeing. RESULTS: An existing mathematical model for microbial community growth and metabolism was combined with models for each of the three hydrogenotrophic functional groups. The model was further developed for application to the colonic environment via inclusion of responsive pH, host metabolite absorption and the inclusion of host mucins. Predictions of the model, using two existing metabolic parameter sets, were compared to experimental faecal culture datasets. Model accuracy varied between experiments and measured variables and was most successful in predicting the growth of high relative abundance functional groups, such as the Bacteroides, and short chain fatty acid (SCFA) production. Two versions of the colonic model were developed: one representing the colon with sequential compartments and one utilising a continuous spatial representation. When applied to the colonic environment, the model predicted pH dynamics within the ranges measured in vivo and SCFA ratios comparable to those in the literature. The continuous version of the model simulated relative abundances of microbial functional groups comparable to measured values, but predictions were sensitive to the metabolic parameter values used for each functional group. Sulphate availability was found to strongly influence hydrogenotroph activity in the continuous version of the model, correlating positively with SRB and sulphide concentration and negatively with methanogen concentration, but had no effect in the compartmentalised model version. CONCLUSIONS: Although the model predictions compared well to only some experimental measurements, the important features of the colon environment included make it a novel and useful contribution to modelling the colonic microbiota.
- ItemHeat treatment and homogenization of bovine milk loosened gastric curd structure and increased gastric emptying in growing pigs(Elsevier Ltd, 2023-04) Ahlborn NG; Montoya CA; Hodgkinson SM; Dave A; Ye A; Samuelsson LM; Roy NC; McNabb WCDuring gastric digestion, bovine milk forms a curd, which consists largely of proteins and lipids. However, it is unknown how processing-induced changes to curd structure affects the gastric emptying of milk proteins and lipids. This study aimed to determine the impact of heat treatment and homogenization on gastric curd formation, and gastric emptying of dry matter (DM), proteins and lipids from bovine milk fed to pigs as a human model. Growing pigs (n = 180, mean ± standard error of the mean (SEM) bodyweight 22.4 ± 0.13 kg) consumed raw, or pasteurized non-homogenized (PNH), or pasteurized homogenized (PH), or ultra-high temperature treated homogenized (UHT) milk diets. A protein-lipid-free lactose (PLFL) solution was also fed as a test diet. At 0, 20, 60, 120, 180 and 300 min postprandially the entire gastrointestinal tract was dissected out. The gastric chyme (curd and liquid) fractions were collected after separation using a mesh screen. The DM, protein, and lipid contents of these fractions were quantified. Confocal, transmission electron microscopy, cryo-scanning electron microscopy and rheological analyses were conducted to determine the micro- and macrostructure of the curd. Overall, both heat treatment and homogenization influenced the in vivo gastric curd structure formed of bovine milk, although to different extents. The gastric emptying of DM, proteins, and lipids increased with the extent of processing. Gastric emptying rates of DM and proteins followed the pattern UHT > PH > PNH = raw, while emptying rates of lipid also differed between PNH and raw milk. Curd structure was the main gastric parameter affected in PNH milk.
- ItemHydrogen cross-feeders of the human gastrointestinal tract.(Taylor & Francis Group, 2019-01-01) Smith NW; Shorten PR; Altermann EH; Roy NC; McNabb WCHydrogen plays a key role in many microbial metabolic pathways in the human gastrointestinal tract (GIT) that have an impact on human nutrition, health and wellbeing. Hydrogen is produced by many members of the GIT microbiota, and may be subsequently utilized by cross-feeding microbes for growth and in the production of larger molecules. Hydrogenotrophic microbes fall into three functional groups: sulfate-reducing bacteria, methanogenic archaea and acetogenic bacteria, which can convert hydrogen into hydrogen sulfide, methane and acetate, respectively. Despite different energy yields per molecule of hydrogen used between the functional groups, all three can coexist in the human GIT. The factors affecting the numerical balance of hydrogenotrophs in the GIT remain unconfirmed. There is increasing evidence linking both hydrogen sulfide and methane to GIT diseases such as irritable bowel syndrome, and strategies for the mitigation of such health problems through targeting of hydrogenotrophs constitute an important field for further investigation.
- ItemMathematical modelling supports the existence of a threshold hydrogen concentration and media-dependent yields in the growth of a reductive acetogen.(Springer Nature Limited, 2020-05-01) Smith NW; Shorten PR; Altermann E; Roy NC; McNabb WCThe bacterial production of acetate via reductive acetogenesis along the Wood-Ljungdahl metabolic pathway is an important source of this molecule in several environments, ranging from industrial bioreactors to the human gastrointestinal tract. Here, we contributed to the study of reductive acetogens by considering mathematical modelling techniques for the prediction of bacterial growth and acetate production. We found that the incorporation of a hydrogen uptake concentration threshold into the models improves their predictions and we calculated this threshold as 86.2 mM (95% confidence interval 6.1-132.6 mM). Monod kinetics and first-order kinetics models, with the inclusion of two candidate threshold terms or reversible Michaelis-Menten kinetics, were compared to experimental data and the optimal formulation for predicting both growth and metabolism was found. The models were then used to compare the efficacy of two growth media for acetogens. We found that the recently described general acetogen medium was superior to the DSMZ medium in terms of unbiased estimation of acetogen growth and investigated the contribution of yeast extract concentration to acetate production and bacterial growth in culture. The models and their predictions will be useful to those studying both industrially and environmentally relevant reductive acetogenesis and allow for straightforward adaptation to similar cases with different organisms.
- ItemMetabolite profiling of peripheral blood plasma in pigs in early postnatal life fed whole bovine, caprine or ovine milk(Frontiers Media S.A., 2023-09-26) Jena A; Montoya CA; Fraser K; Giezenaar C; Young W; Mullaney JA; Dilger RN; Roy D; McNabb WC; Roy NC; Leroux CRuminants' milk is commonly used for supplying nutrients to infants when breast milk is unavailable or limited. Previous studies have highlighted the differences between ruminants' milk composition, digestion, absorption, and fermentation. However, whether consuming different ruminants' milk impact the appearance of the circulatory blood metabolites in the early postnatal life is not well understood. The analysis conducted here aimed to determine the effect of feeding exclusively whole milk from bovine, caprine or ovine species to pigs, approximately 7 days-old for 15 days, on circulatory blood plasma metabolites. Relative intensities of plasma metabolites were detected using a liquid chromatography-mass spectrometry based metabolomic approach. Seven polar and 83 non-polar (lipids) metabolites in plasma were significantly different (false discovery rate < 0.05) between milk treatments. These included polar metabolites involved in amino acid metabolism and lipids belonging to phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, and triglycerides. Compared to the caprine or bovine milk group, the relative intensities of polar metabolites and unsaturated triglycerides were higher in the peripheral circulation of the ovine milk group. In contrast, relative intensities of saturated triglycerides and phosphatidylcholine were higher in the bovine milk group compared to the ovine or caprine milk group. In addition, correlations were identified between amino acid and lipid intake and their appearance in peripheral blood circulation. The results highlighted that consuming different ruminants' milk influences the plasma appearance of metabolites, especially lipids, that may contribute to early postnatal life development in pigs.
- Item"Nourish to Flourish": complementary feeding for a healthy infant gut microbiome-a non-randomised pilot feasibility study.(Springer Nature Limited., 2022-05-18) Lovell AL; Eriksen H; McKeen S; Mullaney J; Young W; Fraser K; Altermann E; Gasser O; Kussmann M; Roy NC; McNabb WC; Wall CRBACKGROUND: The introduction of complementary foods and changes in milk feeding result in modifications to gastrointestinal function. The interplay between indigestible carbohydrates, host physiology, and microbiome, and immune system development are areas of intense research relevant to early and later-life health. METHODS: This 6-month prospective non-randomised feasibility study was conducted in Auckland, New Zealand (NZ), in January 2018. Forty parents/caregivers and their infants were enrolled, with 30 infants allocated to receive a prebiotic NZ kūmara (flesh and skin; a type of sweet potato) prepared as a freeze-dried powder, and ten infants allocated to receive a commercially available probiotic control known to show relevant immune benefits (109 CFU Bifidobacterium lactis BB-12®). The primary outcome was the study feasibility measures which are reported here. RESULTS: Recruitment, participant retention, and data collection met feasibility targets. Some limitations to biological sample collection were encountered, with difficulties in obtaining sufficient plasma sample volumes for the proposed immune parameter analyses. Acceptability of the kūmara powder was met with no reported adverse events. CONCLUSION: This study indicates that recruiting infants before introducing complementary foods is feasible, with acceptable adherence to the food-based intervention. These results will inform the protocol of a full-scale randomised controlled trial (RCT) with adjustments to the collection of biological samples to examine the effect of a prebiotic food on the prevalence of respiratory tract infections during infancy. Trial registration Australia New Zealand Clinical Trials Registry ACTRN12618000157279 . Prospectively registered on 02/01/2018.
- ItemThe classification and evolution of bacterial cross-feeding(Frontiers Media S.A., 2019-01-01) Smith NW; Shorten PR; Altermann E; Roy NC; McNabb WC; Harcombe WBacterial feeding has evolved toward specific evolutionary niches and the sources of energy differ between species and strains. Although bacteria fundamentally compete for nutrients, the excreted products from one strain may be the preferred energy source or a source of essential nutrients for another strain. The large variability in feeding preferences between bacterial strains often provides for complex cross-feeding relationships between bacteria, particularly in complex environments such as the human lower gut, which impacts on the host's digestion and nutrition. Although a large amount of information is available on cross-feeding between bacterial strains, it is important to consider the evolution of cross-feeding. Adaptation to environmental stimuli is a continuous process, thus understanding the evolution of microbial cross-feeding interactions allows us to determine the resilience of microbial populations to changes to this environment, such as changes in nutrient supply, and how new interactions might emerge in the future. In this review, we provide a framework of terminology dividing bacterial cross-feeding into four forms that can be used for the classification and analysis of cross-feeding dynamics. Under the proposed framework, we discuss the evolutionary origins for the four forms of cross-feeding and factors such as spatial structure that influence their emergence and subsequent persistence. This review draws from both the theoretical and experimental evolutionary literature to provide a cross-disciplinary perspective on the evolution of different types of cross-feeding.
- ItemThe effects of ruminant milk treatments on hippocampal, striatal, and prefrontal cortex gene expression in pigs as a model for the human infant(Frontiers Media S.A., 2022-08-15) Jena A; Montoya CA; Young W; Mullaney JA; Roy D; Dilger RN; Giezenaar C; McNabb WC; Roy NC; Lim CKWhile infant formula is usually bovine milk-based, interest in other ruminant milk-based formulas is growing. However, whether different ruminant milk treatments with varying nutrient compositions influence the infant's brain development remains unknown. The aim was to determine the effects of consuming bovine, caprine, or ovine milk on brain gene expression in the early postnatal period using a pig model of the human infant. Starting at postnatal day 7 or 8, pigs were exclusively fed bovine, ovine, or caprine milk for 15 days. The mRNA abundance of 77 genes in the prefrontal cortex, hippocampus, and striatum regions was measured at postnatal day 21 or 22 using NanoString. The expression level of two hippocampal and nine striatal genes was most affected by milk treatments, particularly ovine milk. These modulatory genes are involved in glutamate, gamma-aminobutyric acid, serotonin, adrenaline and neurotrophin signaling and the synaptic vesicle cycle. The expression level of genes involved in gamma-aminobutyric acid signaling was associated with pigs' lactose intake. In contrast, milk treatments did not affect the mRNA abundance of the genes in the prefrontal cortex. This study provides the first evidence of the association of different ruminant milk treatments with brain gene expression related to cognitive function in the first 3 months of postnatal life.
- ItemWhole tissue homogenization preferable to mucosal scraping in determining the temporal profile of segmented filamentous bacteria in the ileum of weanling rats(Microbiology Society, 2021-03-23) Oemcke LA; Anderson RC; Rakonjac J; McNabb WC; Roy NCSegmented filamentous bacteria (SFB) are thought to play a role in small intestine immunological maturation. Studies in weanling mice have shown a positive correlation between ileal SFB abundance and plasma and faecal interleukin 17 (IL-17) and immunoglobulin A (IgA) concentrations. Although the first observation of SFB presence was reported in rats, most studies use mice. The size of the mouse ileum is a limitation whereas the rat could be a suitable alternative for sufficient samples. Changes in SFB abundance over time in rats were hypothesized to follow the pattern reported in mice and infants. We characterized the profile of SFB colonization in the ileum tissue and contents and its correlation with two immune markers of gastrointestinal tract (GIT) maturation. We also compared two published ileum collection techniques to determine which yields data on SFB abundance with least variability. Whole ileal tissue and ileal mucosal scrapings were collected from 20- to 32-day-old Sprague-Dawley rats. SFB abundance was quantified from proximal, middle and distal ileal tissues, contents and faeces by quantitative PCR using SFB-specific primers. Antibody-specific ELISAs were used to determine IL-17 and IgA concentrations. Significant differences in SFB abundance were observed from whole and scraped tissues peaking at day 22. Variability in whole ileum data was less, favouring it as a better collection technique. A similar pattern of SFB abundance was observed in ileum contents and faeces peaking at day 24, suggesting faeces can be a proxy for ileal SFB abundance. SFB abundance at day 26 was higher in females than males across all samples. There were significant differences in IgA concentration between days 20, 30 and 32 and none in IL-17 concentration, which was different from reports in mice and infants.